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It is noted that the matrix Z, of order n, defined in terms of the n arbitrary numbers x; by the
formulaZ, =68, 3';_,, (x, —x,)7 ' + (1 — 8, )x; — x, )", may be considered (in an
appropriate framework) to correspond to the differential operator d /dx. There follow
prescriptions to construct explicit matrices of (arbitrary) order # in terms of # (or more) arbitrary
numbers or of the n roots of given polynomials, matrices whose eigenvalues (and eigenvectors) are
given, fully or in part, by very simple formulas. Novel representations of the classical polynomials
(Hermite, Laguerre, Lagrange, Gegenbauer, Jacobi) are also obtained, such as the formula for
Hermite polynomials H,, (x) = 2" det[xI — H(g )], where I is the unit matrix (of order n) and the
matrix H(g ), of order #, is defined by H,, (¢ ) = (21)~"/*(8,. (n — 1)[exp(2i6;) + } exp( — 2i6})]
+ (1 — 84 ) { — exp(2i6)) + [2i sin(6, — 0,)] ' exp[ — i(6; + 6,)1}), With 8, = @ + 7mj/n, ¢

arbitrary.

PACS numbers: 02.10.Sp, 02.30.Tb, 02.30.Lt

I. INTRODUCTION

Certain remarkable properties of the zeros of the classi-
cal polynomials have been recently uncovered.'”’ The proto-
type of these results is the statement'? that the Hermitian
matrix A, of order n, defined by

Ay = 5jk Z ' (xj - x/)_2 -1 - 6jk)(xj - xk)_z’ 1.y
=

has the first # nonnegative integers, m = 0,1,...,n — 1, as ei-
genvalues, if the numbers x; are the n zeros of the Hermite
polynomial of order #,

H,(x)=0, j=12..n. (1.2)

It has been, moreover, noted® that the (generally non-Her-
mitian) matrix N, of order n, defined by

Ny =8ux; IZ]' g —x)' + A =8) %0 —x)",
a3

also has the first # nonnegative integers as eigenvalues, but
now for any arbitrary choice of the » numbers x; (all differ-
ent, of course). And a third typical result®® states that the
Hermitian matrix L(@), of order n, defined by

L, (0)=8, x, cosf + (1 —8,)i(x; —x,)" sinb,
14
has eigenvalues independent of &, if the x;’s are again the n
zeros of the Hermite polynomial of order n; see (I.2). Thus
the eigenvalues of L(6 ) coincide with the x; ’s themselves
[since for @ = 0, L (&) is diagonal], and the following repre-
sentation for Hermite polynomials holds:

H,(x)=2"det[xI — L(6)] . (1.5)
“Permanent address.
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This formula is trivial for 8 = 0, but not so for  #0.

These results were originally obtained as by-products of
the investigation of certain integrable dynamical systems.>®
Subsequently a more direct approach to their derivation,
based on complex integration, was developed.® The main
purpose of the investigation reported in this paper has been
to cast these results in a more algebraic framework. In so
doing, we have found many additional results of this kind.
These include prescriptions to construct explicit matrices of
(arbitrary) order n in terms of n (or more) arbitrary numbers
or of the n roots of given polynomials, matrices whose eigen-
values (and eigenvectors) are given, fully or in part, by very
simple formulas. Novel representations of the classical poly-
nomials are also obtained, such as the formula for Hermite
polynomials

H,(x) = 2"det[x] — H(p)]1, (1.6)
with the matrix H(g), of order n, defined by

H, (@)= @n)y"*(8,(n —1) [exp(2i6,)
+ L exp( —2i6)] + (1 — 8,){ — exp(2i6))
+ [2isin(8;, — 6,)]" exp[ — i, + 6,)]D),
(1))

where
6j = ¢ + 77.7./’1) ./= 1,2,...,”, (IS)

the quantity @ being arbitrary.

But perhaps more important than these specific find-
ings is the connection that has emerged between the items
mentioned in the title of this paper. Linear differential opera-
tors, matrices, and polynomials constitute, of course, the ba-
sic lore of linear algebra and calculus. For instance: the ei-
genvalues of a matrix of order » coincide with the zeros of a
polynomial of order n, the secular determinant of the matrix;
sets of polynomials, such as the classical (Hermite, Laguerre,
and Jacobi) polynomials, may be identified as the eigenfunc-
tions of linear differential operators; a matrix of order » is
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associated with a linear differential operator by projecting it
in a finite-dimensional functional space, and if that space
contains m eigenfunctions of the differential operator, the
associated matrix possesses the corresponding m eigenval-
ues; and so on. We therefore hesitate to claim total novelty
for the results reported below; indeed certain relationships
with the standard problems of interpolation and mechanical
quadrature (Ref. 9, Chaps. XIV and XV) are apparent. But
we have not been able to locate in the literature any presenta-
tion of the basic results given below, nor of the specific find-
ings they entail. Yet the applicative potential of these results
appear vast. For instance, matrices having a known spec-
trum [such as (I.3) and those given below] should be useful
for didactic purposes {even in secondary school) or for test-
ing computer programs {note that the order n of these matri-
ces may be arbitrarily large). Thus the fact that these results
are not generally known supports our impression about their
novelty and has provided one of the motivations for this pre-
sentation. [There are, of course, also other prescriptions to
construct matrices with known eigenvalues; for instance one
can “‘undiagonalize” a diagonal matrix by a canonical trans-
formation, or one can use the connection with differential
operators mentioned above. But these prescriptions are
more cumbersome to carry out, especially if the order n is
large, than the evaluation of explicit formulas such as (1.3).]

The paper is organized as follows. Section 1 contains
the basic definitions and results. In Sec. 2 (which can be
omitted in a first reading) these results are discussed in the
framework of the standard theory relating matrices, differ-
ential aperators, and orthogonal polynomials. In Sec. 3 ma-
trices of order n, constructed in terms of » (or more) arbi-
trary numbers and having known eigenvalues and
eigenvectors, are exhibited. In Sec. 4 matrices of order n
having known eigenvalues and eigenvectors (and, in some
cases, interesting algebraic properties) are exhibited, being
constructed in terms of the nth roots of unity or of the # zeros
of given polynomials. The result (1.6), and analogous repre-
sentations for Laguerre, Legendre, Gegenbauer, and Jacobi
polynomials, are also obtained. Section 5 concludes the pa-
per by outlining some directions of future research that are
suggested by these findings.

Clearly, the specific findings reported in Secs. 3 and 4
are merely instances of the kind of results that follows from
the basic treatment of Sec. 1. Any diligent reader may easily
find, in a similar manner, additional analogous results, But
in the presentation of Secs. 3 and 4 we have also tried to cater
to the casual reader, who is only interested in the application
of these findings (for instance, to test a computer program).
Thus we have striven (at the cost of some repetitiveness) to
formulate the results self-consistently, so that they can also
be utilized by a user who does not bother to read the whole
paper and to master its notation; in particular, the reader
who is only interested in using test matrices with known
eigenvalues can proceed immediately to the relevant results
given in Sec. 3.

1. BASIC DEFINITIONS AND RESULTS

Indices (and exponents) are indicated by lower case ital-
ic letters (j,k,,m,p,q,r.s); the first few ( j,k,/,m) range from 1
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to n, the last few (g,r,s) from O to n — 1; the index p is used for
the generic nonnegative integer; n is a fixed integer, n>2.
Summations are generally over these respective ranges; but a
prime appended to a summation symbol signifies omission of
any singular term in the sum.

Lower (respectively upper) case boldface is used for vec-
tors (respectively matrices), of order #; the generic vector v
has components v;, the generic matrix M has elements M, .

In Secs. 1, 2, and 3 the n different numbers x; are arbi-
trary (possibly complex, except in Sec. 2). We use the nota-
tion p, (x) for the polynomial having the x;’s as zeros, and of
course p, (x) indicates its derivative:

putx) =k, T x—x,). (L1)

i=

P =p,x) S x—x) " (1.2)
j=1
The normalization constant &, is unessential; it is intro-
duced here for notational convenience in connection with
the treatment of Sec. 2.
The vectors u, v, §=E'", and § '” are defined as follows:

w=1, (1.3)
v, =[plx)]" "= [kn 1 —xk)]" : (1.4)
[=1
I3
§j= Z’(xj—xk)“ly g;p)z Zl(xj—xk)vn (1.3)
K= i=1
The matrices LJ, X, 5=, = Y=Y, Y!",
and Z are defined as follows:
Li=64, J, =1, (1.6)
X =diaglx;), Xy =6,x;, (1.7)
Z=diag(§,), ='7=diag¢!”), (1.8)

Y, =(1- ajk)(xj — X)) Y,l'/f) =(1 =8l —x,) 7,
(1.9)

n 1

Z, =5 z,(xj —x) 7 A (1= )l — xi) -

There are a number of trivial relationships satisfied by these
matrices. We display the principal ones:

(1.10)

J*=rnJ, Ju=nu, {r.1n

JZ =0, (1.12)
JXZ=(n—1)J, (1.13)
(Zd), =2¢;, (1.14a)
(XZJ), =2£;x,, (1.14b)
[ZX]=1-1J, (1.15)
[X,YP] =Y 1, (1.16)
Z2=E5"—5?P427Y - 2Y7?, (1.17a)

(Z2]jk =6, {[ i "(x; —x;]"]z - i' {x; — x,)_zl

=1 i=1

+ 2(1 — 8, )lx; —x,)""
><[ i’(xj —x)7 ' = (x —xk)*'] , (1.17b)

=1
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n

(Zz)jkzsjk i’(xj —x,)_' Z ,(xj _xm)—l(l _51m)

m=

+2(1 ‘5jk)(xj —xk)_l
X zn:’(x,— —x)" (1= 84) -

=1

(1.17¢}

The matrices Z and Z? will play an important role; this moti-
vates our display of three, clearly equivalent, versions of
(1.17).

A fundamental role for all subsequent developments is
played by the following Lemma.

Lemma 1.1: Let P, (x) be any polynomial of degree
g<n — 1; let the linear differential operator .# be defined by

n—1 d r
‘97 = F r (x ) ]
rgl dx’
the functions F, (x) being entire but otherwise arbitrary; and
let

(1.18)

Qx) =f-Pq(x). (1.19)
Define the matrix F, of order n, by the formula
n—1
F= Y F(X)Z’, (1.20)

r=0
obtained by replacing in (1.18) x by X and d /dx by Z [X and
Z being defined by (1.7) and (1.10)]. There holds, then, the
vector equation

QX)v=FF (X)v,

with v defined by (1.4), (1.2), and (1.1).

To prove this Lemma it is convenient to go through the
following results, some of which (see below) are in fact mere-
ly subcases of it.

Proposition 1.1:

JXv=0, ¢g=0,1,.,n—2.

(1.21)

(1.22)

Proof: Consider the function f, (z) = z7/p,, (z) of the com-
plex variable z [with p,, (z) defined by (1.1)]. It is meromorphic
in the whole complex z-plane, and it vanishes at least as |z] ™2
when |z[— . Therefore the sum of all its residues vanishes,
since it coincides with the integral of £, (z) over a circle of
diverging radius. But this yields precisely (1.22). Q.E.D.

Proposition 1.2:

JXt"'v=k Tu (1.23)
Proof: As above, with the obvious modification implied
by the nonvanishing of the contour integral, whose evalua-
tion yields the right-hand side (rhs) of (1.23). (This proposi-
tion is not needed for the proof of the Lemma, but it will be
useful in the following.)
Proposition 1.3:

ZXv=gX", ¢=01,.n—1 (1.24)

Proof: Same as above, but using the function 8, (2)
=z9/ [(z — X;) p,(2)] in place of £, (z) [note that g, (z) has
n — 1 simple poles at z = x,, k #j, and one double pole at
z=x].

Corollary 1.3.1: The matrix Z is nilpotent,
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Z"=0.
This result is not new.}
Proposition 1.4:

(1.25)

Z7Xiv=0 if p>q, ¢=0]l,..,n—1 (1.26a)
Z"Xiv=[q/(g—p)]1 X v
if O<p<gq, ¢=01,.,n—1. (1.26b)

Proof: By elementary algebraic techniques or by recur-
sion, using (1.24), (1.15), (1.12), and (1.22).

The validity of Lemma 1.1 is an elementary conse-
quence of the last Proposition.

The main notion implied by Lemma 1.1 [or, for that
matter, by (1.26)] is the existence of a correspondence be-
tween the matrix Z and the differential operatord /dx; Z acts
on powers of X in the same way as d /dx acts on powers of x.
This correspondence, however, does not hold as a matrix
equation, but only after application to the basic vector v;
moreover, it holds only for powers of X that are less than #.
But let us reemphasize that it holds for the matrices X and Z
explicitly defined by (1.7) and (1.10) in terms of the n arbi-
trary numbers X;.

2. MATRICES AS PROJECTIONS OF DIFFERENTIAL
OPERATORS

In Sec. 1 a connection has been displayed that relates
the matrix Z, of degree n, defined by (1.10) in terms of the n
arbitrary numbers x;, to the differential operator d /dx act-
ing in the functional space spanned by polynomials of degree
n — 1 or less. This suggests that Z be simply related to the
projection of d /dx on an appropriate basis of that functional
space. In this section we display this relation in the frame-
work of the general theory relating matrices, differential op-
erators, and orthogonal polynomials.

We assume in this section that the polynomial p, (x),
defined in terms of the n arbitrary numbers x; by (1.1), be-
longs to a set of polynomials p,, (x), orthogonal with some
appropriate weight w(x):

b
J~Mwﬁmhdﬂmﬁdﬂ=&m,Lm=Llwn+L
@.1)

Note that, for notational convenience, we have assumed
these polynomials to be normalized. The quantities @ and b
in (2.1) need not be finite; but we assume for simplicity that
they, as well as the weight w(x), are real. Thus we restrict
consideration in this section to the case when all the numbers
x; are real, and fall in the (possibly infinite) interval (a,b ).

We now report, for the convenience of the reader, cer-
tain standard formulas for orthogonal polynomials,®'® that
are used below:

ﬁ‘, P 1 X)) P ()

" e D 2D P (D)
—Pu —1 (x)pn(y)]/(x —.V) y

i [Pm -1 (x)]2
=(k, . /k)[prp, ) —p; P, (D], 2.3)

(2.2)
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Ppi 1 X)=U,x+B,)p,x)~C,p, ), (2.4
A/n = km +1 /knw
Bm :Am(rm+l — ) Cm :Arn/Am—l .

In these equations (and below) the quantities k,, and r,, are
defined by

p"l (x) = km (xln + rmxm - + ...) N
We assume, for definiteness, k,, to be positive.

Alternative versions of some of the equations given be-
low are obtained using the formula

Pui )= —[k2/k, Ky )] P01 ),
which is implied by (2.4) and (1.1).

We introduce now another set of orthonormal polyno-
mials p¥ | (x), all of them of degree n — 1:

(2.5)

(2.6)

P () =6 P, X/ (x =), j=12...m, Q7

Cj = [kn —1 pn —1 (xj)/[kn p; (xj):nl/2 ’ .I = 1129-'-,’1’ (28)
b

J dx w(x) pi2 () pi 2 () =8, jk=12,m. (2.9)

It can be easily shown that the argument of the square root in
(2.8) is always positive.
These polynomials possess the following properties:

P =k, [[ x—x). (2.10)
")
PP ) =8 ik, T g —x @.112)
"
P ) =8y ¢ pr(x)), (2.11b)
3o prr-1 () =p,(x), 2.12)
i1 J

S P 1) P (), (2130)

m=1

E PP (p)=

E Pl )P ()

Ji=1

_ k, + P p,_ 1 (¥)—p, P, (Y)

” ‘. o . (2.13b)
jE‘ (2 @)

= k' ()P, 1 () = (Dp,X)], (2.14)

3 b )P =G A)AL @, 1)

2 P P ) =8, [P )Y (2.16)

It is also of interest to report the linear transformations
relating the orthonormal polynomials p,,, _ , (x),

m = 1,2,...,n (of degrees 0,1,...,n — 1) to the polynomials

P (x),j = 1,2,...,n (all of them of degree n — 1):

PP = S wlp, (), j=12.m, 2.17)
m=1

Po 1= 3 uPpL @), m=12,m 2.19)
e
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The quantities u'/ satisfy the orthogonality and complete-
ness relations

z whul) =6, , jk=12..n, (2.19)
2 ) =6,., Im=12,..n, (2.20)

and are explicitly given by the formula
Uy = P () [ Pr(x)] - (2.21)

These equations, (2.7)-(2.21), are not new (see Chaps.
XIV and XV of Ref. 9); indeed the quantities ¢;, see (2.8), are
related to the Christoffel numbers 4; [see Eq. (3.4.7) of Ref.
9] by
¢; =k, /Ky Pur (X DA =[pnx)] T A V2

However, for completeness, we provide a terse proof of them
in Appendix A.

The formulas (2.19) and (2.20) suggest the introduction
of an n-dimensional vector space, spanned by the orthogonal
set of unit vectors i, m = 1,2,...,n, of components "™,

(2.23)
Then clearly [with obvious notation, see (2.19) and (2.20)}]
@, 0" =4, , (2.24)

(2.22)

i = u?, jm=12,..n

Y ea® =1. (2.25)

f=
The motivation for using the definition (2.23) is that this
allows a neat translation of equations valid in the functional
space of the original orthogonal polynomials p,, (x) into for-
mulas in the n-dimensional vector space we have just intro-
duced. For instance, to the eigenvalue equation

‘H/pp--l(x)zap pp~l(x)7 P = 1’2y ty (226)

& being, say, a differential operator, there corresponds the
vector equation

Au"=gq, 1", m=12,..n .27
with the matrix A defined by
Ay = fb dx w(x) pi, (x) & p,0y (%) (2.28)
to the raising and lowering operator formulas
-Q{‘i)Pp— (%) =a(pi]P; 11 () ay7'=0, p=12,-,
(2.29)
there correspond the vector equations
AU = 78D, m=12,..n, (2.30a)
ACDEM = (@) — 8, ) ET Y, m=12,.n,
(2.30b)

again with the matrices A ¢ *’ defined by
A4 = f dx wx) p ) /T PR ()5 (2.31)

and so on. Note the extra term in the rhs of (2.30b) as com-
pared to (2.29), implying
A a™ =0; (2.32)

its appearance is, of course, related to the fact that the space
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spanned by the vectors i, m = 1,2,...,n [or, equivalently,
by the orthogonal polynomials p¢? | (x),j = 1,2,...,n] is n-
dimensional, while the space spanned by the orthogonal
polynomials p, ;(x),p=1,2, -, is infinite-dimensional.

Clearly the matrices A and A=’ can also be expressed
by the formulas

A= 3 a,imei", (2.33)
m=1
A = i asnf')ﬁ('"‘l)gﬁ(”‘)’ (2.34a)
m=2
n—1
A — Z alH Em Y g (2.34b)

m=1
These formulas contain no integration [in contrast to (2.28)
and (2.31)]; but they involve all the polynomials p,, _, (x),
m = 1,2,...,n, [evaluated at the points x;; see (2.21) and
(2.23)].
It is now natural to introduce the matrices X and Z via
the definitions

= f " dx w0 PP, () x P (3), 235)
Z, = f dx w(x) pP | (%) ( a‘,’ ) PO . (236)
a x

The (very simple) relation of these matrices to the matrices X
and Z introduced in the preceding section is specified by the
following

Proposition 2.1: Let the matrices X and Z, of order n, be
defined, in terms of the » arbitrary numbers x;, by (1.7) and
(1.10); and let the matrices X and Z be defined, in terms of
the same numbers x;, by (2.35) and (2.36) [with (2.7), (2.8),
(2.5), and (1.1)]. There holds then the relations

X =X=C'XC, (2.37)

Z=C'ZC, (2.38)
with the diagonal matrix C defined by

C =diag(c;), Cu =3¢ (2.39)

where the ¢;’s are defined by (2.8).

Proof: The first part, namely (2.37), is a well-known
result” whose proof need not be reported (it is analogous to,
but more straightforward than, the proof of the second part);
note that the second equality in (2.37) is trivially equivalent
to the first, since X and C obviously commute (they are both
diagonal). To prove (2.38) we note that (2.36) can be rewrit-
ten in the form

b n

2= [ drwrpl a0 $ e—x) 240)

a 1=1

1#k
where we have used the formula
dpi!? | (x)
dx‘ =p, (%) 1; e —x)", (2.41)
14k

implied by (2.10). Now use of the identity
3 —x)'
f=1
I £k
923 J. Math. Phys., Vol. 22, No. 5, May 1981

=3 (x, —x,)"

I=1

—x—x) S —x)x Xy, (24

g

X | dxwx)pl” () p (%) (2.43)
To obtain the first term in the rhs, (2.9) has been used, while
to get the second term, (2.7) has been used twice. Now using
once more (2.9) there obtains (2.38). Q.E.D.

If the weight w(x) has the property to vanish at both
ends of the interval (a,b), as is, for instance, the case if the
polynomial p,, (x) coincides with the Hermite polynomial
H {x), or with the generalized Laguerre polynomial L Z(x)
with a > 0, or with the Jacobi polynomial p*#)(x) with a > 0
and 8> O (here, and throughout this paper, we use for or-
thogonal polynomials the notation of Ref. 10), then by per-
forming a partial integration in the rhs of (2.36) and using
(2.7), (2.38), and (1.10) we obtain the formulas

(x —xk)_l(cj P—er?)
) f dx w'(x) p2 () [(x — x)(x — x)],

Gk =12,..n, j#k,  (2.44)

£=3"0;—x)"

= ,
- _ %J dxw'(x) [p, (x)/(x —~ x)]*.

These formulas provide a connection between the zeros of
the polynomial p, (x) and the derivative of the weight w(x).
Note that (2.45) contains no additional constant besides the
x;’s [recall that the polynomials p,, (x) are, by assumption,
normalized, see (2.1)], while (2.44) can be compared with the
formula

2 f dx w(x)[ p, X/ (x — x)]?,

which is implied by (2.22) together with Eq. (3.4.6) of Ref. 9.
Also note that this last formula, together with (2.44), yields
the remarkable equation

fdx W) [0 — %) + (x — x,)"] + Jw'(0)]

Pa(x) B . .
X(m) - 0’ J’k = 1,2,---,?1, _]?ék ,
2.47)

(2.45)

(2.46)

valid for the orthogonal polynomial p, (x).

The main result of this section is displayed by Proposi-
tion 2.1. This finding, together with the rest of the discussion
in this section, shows how the main result of Sec. 1 can be set
in the framework of the standard theory relating matrices
and linear differential operators. The content of Lemma 1.1
should nevertheless be considered nontrivial, in view of the
simple and explicit form of the matrix Z, see (1.10). This is
confirmed by the implications that follow quite directly from
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Lemma 1.1, as exemplified by the results reported in the
following two sections.

3. PROPERTIES OF CERTAIN MATRICES
CONSTRUCTED WITH ARBITRARY NUMBERS

The following result is an immediate consequence of
Lemma 1.1.
Lemma 3.1: Let the linear differential operator

(3.1)

possess m<n distinct elgenvalues fi, I =1,2,...,m, the corre-
sponding eigenfunctions P ")(x) being polynomials of degree
n — 1 or less:

FPIx)= £,Px), I=12,.,m<n,

n—1
POxy= % a’x*. (3.2)
qg=0
Then the matrix of order n
n 1
= 2 FXZ, 3.3)

r==0
with X and Z defined by (1.7) and (1.10) in terms of the n
arbitrary numbers x;, has the same eigenvalues f; and the
(unnormalized) eigenvectors

v =POX)v, I=12,..m<n, 3.4
with v defined by (1.4) [with (1.2) and (1.1)]:
FVU) == _flv([)) l: 1’2""’m<n . (35)

The extension of this result to the case with multiple
eigenvalues requires the appropriate qualifications about the
linear independence of eigenfunctions and eigenvectors, but
is otherwise straightforward.

Note that we are assuming neither the differential oper-
ator nor the corresponding matrix to be Hermitian. Indeed
the results of Sec. 1, and most of those of this and the follow-
ing sections, do not require the introduction of a scalar prod-
uct, either in the functional space nor in the vector space.

Many matrices with (fully or partly) known spectrum
can now be easily constructed using Lemma 3.1 and stan-
dard results for differential operators with polynomial eigen-
functions. We report below a few examples; in some cases we
also display the additional algebraic results that follow from
the possibility, implied by Lemma 1.1, to translate the prop-
erties of a differential operator (for instance, to act as a rais-
ing or lowering operator on the eigenfunctions of the differ-
ential operator . ) into analogous properties of the
corresponding matrix.

Proposition 3.1: The matrix of order n

N = XZ, (3.6)

with X and Z defined by (1.7) and (1.10) in terms of the n

arbitrary numbers x;, has the first » nonegative integers as
eigenvalues, and the corresponding (unnormalized) eigen-
vectors are

v =X""ly, m=12,.,n 3.7
with v defined by (1.4) [with (1.2) and (1.1)]:

NP =(m—-DwW", m=12,..,n (3.8)
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There hold, moreover, the following equations:

V" =m—-Dv" " m=12,..n (3.9)
Xyl = ylm + “, m=12,..n—1, (3.10)

v 5,,,,, k,'v, m=12,.n, (3.1
[Z,N] = (3.12)
INX] = X(I -, (3.13)

with I, J, k£, and u defined by (1.6), (1.1), and (1.3).

These results are not new? {indeed the definition (3.6) of
N coincides with (1.3)]; in the present context they corre-
spond to the differential operator ¥ = x d /dx, with eigen-

functions x .
Proposition 3.2: The matrix of order n
N =XZ 127, (3.14)

with X and Z defined in terms of the » arbitrary numbers x;
by (1.7) and (1.10) [and Z? defined explicitly by (1.17)] has
the first » nonnegative integers as eigenvalues, and the corre-
sponding (unnormalized) eigenvectors are

v g (X)v, m=1.2,..n (3.15)

with H,(x) the Hermite polynomial®'® of degree p and v
defined by (1.4) [with (1.2) and (1.1)]:

NUDYHE — (g — 1) v m=1,2,...,n (3.16)
There hold, moreover, the following equations:

ZyDU = 2(m — 1) v D ;= 1,2,..n, (3.17)
Q2X — Z) v =y by = 1,2, — 1, (3.182)
2X — Z)vH" = H (X)v, (3.18b)
v =4 2n vk, (3.19)

Note that the vector appearing in the rhs of (3.18b) is
generally a linear combination of the # vectors v\ ™, with
coefficients depending on the numbers x;. If the x;’s coincide
with the n zeros of the Hermite polynomial of order n, then
the rhs of (3.18b) vanishes (this case is considered in Sec. 4).

Clearly the results of this Proposition are an immediate
consequence of the Lemmas and of the well-known
formulas® '’

xH | (x) — 3H ,(x) = pH (%),

2xH,(x) —H (x)=H, ,(x).
Proposition 3.3: The matrix of order n
N = [X — (1 + a)1]Z — XZ?,

with I the unit matrix, a any arbitrary number, and X and Z

defined, in terms of the » arbitrary numbers x;, by (1.7) and

{(1.10) [and Z? defined explicitly by (1.17)] has the first n

nonnegative integers as eigenvalues, and the corresponding
(unnormalized) eigenvectors are

yiboom — L X)v, m=12,.,n, 321

with L 7(x) the Laguerre polynomial'® of degree p and v de-
fined by (1.4) [with (1.2) and (1.1)]:

H(x)=2pH, (),

(3.20)

NEWHEm — (g — W m = 1,2,...,n (3.22)
There hold, moreover, the following equations:
LoV = (m — 1+ a) v2 V" om=23..,n, (3.23a)
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Loy =Ly =0, (3.23b)
Ly = g™+ b = 1.2,..n — 1, (3.242)
L+ W = p L «(X)y, (3.24b)
with
L= —-[XZ+(1+aoI]lZ, (3.25a)
L'''=(1+al-X-—[(1 +a)l —2X1Z — XZ%

(3.25b)
and
v =5 (=) '[(n—-D'k,] " u. (3.26)

Analogous remarks to those given after (3.19) apply to
(3.24b). Note that the spectrum of the matrix N “’ (3.20) is
independent, not only of the » numbers x;, but of a as well.

Corollary 3.3.1: The matrix L=, of order n, defined in
terms of the # + 1 arbitrary numbers x; and a by (3.25),
(1.6), (1.7), (1.10), and (1.17), is nilpotent:

L' =0. (3.27)

The formula corresponding, via Lemma 3.1, to (3.22),
is the differential equation satisfied by the (generalized) La-
guerre polynomials'®

x+a-1Dy, —xy,=(m-0y,, y,=L; ,x),

(3.28)
while those corresponding to (3.23) and (3.24) are conse-
quences of the formulas'®
xy:n :(m _l)ym _(m_l +a)ym71

:my’n+l +(x—"m —a)ym ’
ymEL(rzfl(x)y
together with (3.28) or (3.22).

Proposition 3.4: The matrix of order n

NP=[(@-B)I+(@+B8+) X]1Z+(X*-DZ?,
(3.30)
with I the unit matrix, @ and  any arbitrary numbers, and X
and Z defined, in terms of the » arbitrary numbers x;, by
(1.7) and (1.10) [and Z? defined explicitly by (1.17)], has the
n eigenvalues in — 1Y(m +~ a + B), m = 1,2,...,n, and the
corresponding (unnormalized) eigenvectors are

yWhm = p@B) (Xyy, (3.31

with P {“#)(x) the Jacobi polynomial®'® of degree p and v
defined by (1.4) [with (1.2) and (1.1)}:

N(J) v(J)(m) — (m - 1)(m +a +B) V(J)(”'),

(3.29)

m=12,..n,

m=12,...n.
(3.32)

There hold, moreover, the following equations:

@m+a+B)2m +a+B—D)2m+a+f—2) Xy
=2mQ2m+a+B)2m+a+F-2) Wt
+@B2—aH2m +a+ L —1) yrm
+2m+a—1)m+B—1D2m+a+p)

Xy D =23 p (3.332)

Q@m+a+B)2m+a+B—1)2m+a+B—2) Zy™
= 2mm—-1D)2m+a+B)2m+a+L-2)
Xy D 4 2 — BYm — 1) m +a + B)
XC2m+a+B-DvVI" Loam+a—1)
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X(m +ﬂ_— Dm +a+B)2m +a+B) v —h
m=23,.,n—-1, (3.33b)

k-'u

n

2(”—1)+a+/3)

Jy ) — 5nm 2+ (
n—1

(3.34)

Note that the spectrum of the matrix N > depends only
ona + f (it is independent not only of the n numbers x;, but
of the difference @ — S as well).

The differential equations corresponding to
(3.32) — (3.34) are standard equations for the Jacobi polyno-
mials P {*#(x),”'® which are not reported here.

We provide now some more examples of matrices, al-
ways given by simple explicit formulas in terms of n (or
more) arbitrary numbers, whose spectrum is only partially
known.

Proposition 3.5: The matrix of order n

N# = —gl—lglg+ 1) X 7> + (X +¢X ) Z - 127,
(3.35)

with ¢ any nonnegative integer less than »,
g=012,..,n—1, {3.36)

I the unit matrix, X defined by (1.7) in terms of the » numbers
x; (arbitrary except for the restrictions x; # x,, x; #0), Z (and
Z?) defined by (1.10) [and (1.17)}, has the first # — g nonnega-
tive integers as eigenvalues, and the corresponding (unnor-
malized) eigenvectors are

FHIm X/ (X)y, {3.37)

with H,(x) the Hermite polynomial®'® of degree p and v de-
fined by (1.14) [with (1.2) and (1.1)]:

m=12,..,n—gq,

N §HIm = (g — 1) §H o =1,2,..,n —q.  (3.38)
We have, moreover, the equation
Jydtm —g§ 277 Yk u. 3.39)

Note that only if ¢ = Ois the complete spectrum of N */
given [indeed in this case N ) = N ¥ see (3.14)]; for in-
stance, for n = 2 and ¢ = 1 the matrix NY has, in addition
to the eigenvalue O [corresponding to m = 1; see (3.38)], the
eigenvalue 1 — x; % — x; % — (x;x,)"".

The differential formula corresponding to (3.38) reads,
of course,

V' =2x+g/x)y' + [2(m+g -1 +4g(@+1D)x’]y=0,
y=xH, (x). (3.40a)
Another example is obtained from the differential

equation
W' +(l—a—x)y' +[g+r—gla+qg/x]y=0,
y=x'L"¥x). (3.40b)

Here and below L ;(x) is the (generalized) Laguerre polyno-
mial.' It can be formulated as follows.

Proposition 3.6. The matrix N'“' defined by (3.20), satis-
fies the vector equation

INE 4 glg+a) X7 —(g+ I} X LT+ ¥(X)v=0,
(3.41)

F. Calogero 925



provided none of the (otherwise arbitraryj » different num-
bers x; vanishes and ¢ and r are two nonnegative integers
whose sum is less than n,

x#0, j=12..n g¢g=01,.,n—1; r=0,1,..n—1;

g+r<n. 3.42)
Immediate consequences of this Proposition are the fol-
lowing two Corollaries (in addition to Proposition 3.3).
Corollary 3.6.1: the matrix of order n
NO = —gl4+qlg+a)X "+ [X=(1+a)1] Z—X22,
(3.43)
{ with @ arbitrary, ¢ any nonnegative integer less than n,
(3.44)
I'the unit matrix, X defined by (1.7} in terms of the » numbers
X; (arbitrary except for the restrictions x; #x, , x; #0), Z (and
Z?) defined by (1.10) {and (1.17}}}, has the first # — g nonneg-
ative integers as eigenvalues and the corresponding (unnor-
malized) eigenvectors are
FLNm — X9 [ 2+ 29X) y, (3.45)

with L ${x) the (generalized) Laguerre polynomial*® of de-
gree p and v defined by (1.4} {with (1.2) and (1.1)]:

g=01,.,n—1,

m=12,..,n—gq,

NE GEKm — (g — 1) §E0 = 1,2,..n —¢q . (3.46)
There holds, moreover, the equation
JV‘L“’"‘:tSm_,,‘q(-)"’“[(m—1)!k,,]_'u. (3.47)

Note that only if g = Ois the complete spectrum of N -}

determined {in this case N'“) reduces to N ©); see (3.20); in-
deed N'“'= — g[I — (¢ + @) X~'] + N\*!} . For instance,
for n = 2 and g = 1 the matrix N’ has, in addition to the
eigenvalue O {corresponding to m = 1; see {3.46}], the eigen-
value —1 4+ (@ +D{(x;7"' +x,7").

Corollary 3.6.2: The matrix of order n

NGO = —1— @) X+X[(1 +a) I - X] +X°2Z7,

(3.48)

{ with a arbitrary, g any nonnegative integer less than 7,
(3.49)
I the unit matrix, X, Z (and Z?) defined in terms of the n
numbers x; by (1.7), (1.10) [and (1.17)]}, has the n — g eigen-
values (m — 1)im — 1 +a), m=1,2,...,n — g, and the
corresponding (unnormalized) eigenvectors are

Sllmy __ ygm 1 @+ Um — 1)
v “X Ln §-m (X)V,

g=0l1,..n-—-1,

m=12,..n—gq,
(3.50)

with L ¢(x) the (generalized) Laguerre polynomial'® of de-
gree p and v defined by (1.4) [with (1.2) and (1.1)]:

A‘/(u Fem — (m—1D(m—1+a) EATE0]

m=12,...n—¢g. (3.5

There holds, moreover, the equation
JHLem — S0 =) [(n —m)k, | . (3.52)

Note that only if g = O is the complete spectrum of IST(" )
determined; for instance, forn = 2and ¢ = 1 the matrix N ¢©’
has, in addition to the eigenvalue O [corresponding tom = 1;
see (3.51)], the eigenvalue 1 + a — x, — x,.

Also note the relation
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NO = X[(n—1-g) T- N1,

which is clearly implied by (3.20) and (3.48).
A third example is obtained from the differential
equation

(1=-x)y" +[B—a—(a+B+2)x]y
—2[glg+a)1 —x)"' +r(r+BX1+x)"]y
+@+r+s)g+r+s+a+B+Hy=0,

y=(1 — x)%(1 + x) P 12951 20 (x) (3.54)

Here and below P/ (x) is the Jacobi polynomial®'® of de-
gree p. It can be formulated in the following form.

Proposition 3.7: The matrix N ¥’ defined by (3.30) satis-
fies the equation

[NY’ 4-2¢(q + aXI — X' +2 7(r + B)A + X))
—(g+r+sg+r+s+a+£g+1)
XA = X)I 4+ XY P2l 2(Xyy =0, (3.55)

provided g, r, and s are three nonnegative integers whose
sum is less than n,

(3.53)

gq=01,..n—1; r=0,1,.,n—1;
(3.56)

and the (otherwise arbitrary) » different numbers x; satisfy
the restrictions

x,#1, j=12,..n,
X, # =1, j=12,..n,

s=01,..n—1;, g+r+s<n,

if g0, (3.57a)
if  r#0. (3.57b)
Immediate consequences of this Proposition are the fol-

lowing two Coroliaries (in addition to Proposition 3.4).
Corollary 3.7.1: The matrix of order »n

NY = NP +2g(g + )X = X)"' +2r(r + BYI + X)',
(3.58)

with N¥” defined by (3.30), I the unit matrix, ¢ and 3 arbi-
trary, g and » nonnegative integers whose sum is less than n,
g=0,1,..n—-1; qg+r<n, (3.59)
and the matrix X defined by (1.7) in terms of the # different
numbers x;, arbitrary except for the restrictions
x;#1, j=12,..n if ¢#0,
x;#1, j=12,..n, if r#0,
has the n — g — r eigenvalues
lg+r+m—1jilg+r+m+a+73)

m=12,..,n — g — r, and the corresponding eigenvectors
are

0 = (L — X)L+ XY PG 1020 (X) v,
m=12,..,.n—q—r,

r=>01,.,n—1;

(3.60a)
(3.60b)

(3.61)

with P{*”)(x) the Jacobi polynomial®'® of order p and v
defined by (1.4) [with (1.2) and (1.D)}:

NGO =(m ~14 g+ m+a+B+g+r v,

m=12,..n—qg—r. {3.62)
There holds, moreover, the equation
I = B — g L 2T
x(z(m ~lta +B)k a (3.63)
m—1
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Note the property of invariance under the transforma-
tion X«— — X (implying Z«—— — Z), a+—f3, g—r;
and the fact that the eigenvalues (given by this Corollary)
depend on the two numbers & and S only through their sum,
and on the two integers g and r also only through their sum.
The complete spectrum of N is given only if g = = O (in
which case this Corollary reduces to Proposition 3.4); for
instance, for # = 2, ¢ = 1, and 7 = O the matrix N*’ has, in
addition to the eigenvalue 2 + & + S [corresponding to
m = 1; see (3.62)], the eigenvalue
21+ )1 —x)" + (1 —x)'].

Corollary 3.7.2: The matrix of order n

N'=X-DNV 4+ (n—-1-g)(n—g+a+B)X
—4rr+ )1+ X)', (3.64)

where I is the unit matrix, X is defined by (1.7) in terms of the
n different numbers x;, arbitrary except for the requirement

x;#1, j=12,.,n if r#0,

a and [ are arbitrary, g and r are two nonnegative integers
whose sum is less than 7,

g=01,.n—1; r=01,.,n—1; g+r<n, (3.66)

and N is defined by (3.30), has the n — g — r eigenvalues
Am—1)m—1+a)—(n—1—gfn—g+a+8)
—2rr+pB), m=1,2,..,n — g — r, and the corresponding
eigenvectors are

Q(J)(m) — (I _ X)m——I(I 4 X)rP(a+2m,B+2r) (X) v,

n—-m—gq-—r
m=12,..n—qg—r, (3.67)

where P (" #)(x) is the Jacobi polynomial® ' of order p and v
is defined by (1.4) [with (1.2) and (1.1)}:

IQ(J ) §

=Rm-Nm—-1+a)—-(n—1—g@n—g+a+p)
—2rr+B)1 V", m=12,..n—q—r.

(3.68)
There holds, moreover, the equation
JQ(J)(IH) — 6q,0( _ )m — 12m +r—n
2n —m —
x((" " r)+a+ﬂ)k,,“u. (3.69)
n—m-—r

Note that the complete spectrum is given only if
g = r = 0; for instance, forn = 2, ¢ = 1, r = 0, the eigenval-
ues are O [corresponding to m = 1; see (3.68)] and
—2(1 +B8)+(a+ B +2)x, + x,),and forn =2, g =0,
r = | the eigenvalues are — (@ + 38 + 4)[corresponding to
m=1;see(3.68)Janda + B +2 +x, + x, — 4(1 + B)
X[ +x)" + (1 +x)7"].

We end this section emphasizing two points, that are
relevant in view of possible applications of these results to
test computer programs. (i) All the matrices we have given
have a completely explicit representation; in particular, no
matrix products are involved, or matrix inversions, except
with diagonal matrices. (ii) It is clearly posssible to construct
in this way an enormous variety of test matrices with a priori
known eigenvalues, including matrices having only a few
very large off-diagonal elements.
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(3.65)

4. PROPERTIES OF CERTAIN MATRICES
CONSTRUCTED WITH THE ZEROS OF SPECIAL
POLYNOMIALS

In this section we consider properties analogous to
those discussed in Sec. 3, but now for matrices constructed,
rather than with » arbitrary numbers, with the zeros of spe-
cial polynomials. It is then generally possible to compute in
closed form the sums that enter in the definitions, (1.10) and
(1.17), of the matrices Z and Z?, thereby obtaining more
explicit representations of these matrices. Moreover, addi-
tional results, in addition to those of Secs. 1 and 3 (which
continue, of course, to hold), can be obtained.

In Subsec. 4.1 we consider the (very simple) case in
which the numbers x; are the # roots of unity. This choice
yields, among other results, certain novel representations of
the classical polynomials.

In the subsequent subsections we consider the cases in
which the numbers x; are the zeros of the classical polynomi-
als. These choices reproduces, among other results, those of
Ref. 3.

4.1. Matrices constructed with the roots of unity

In this subsection we take the following specific choice
for the polynomials (1.1):

p.(x)=&"—1)/n,

implying, of course,
i) =x""". (4.1.2)
This choice implies (in the notation of Sec. 1):

@.1.1)

x; = expQmij/n), j=1.2,..,n, (4.1.3)
§=n—-0/x;, j=12,..n, (4.1.42)
EX=Ln—DG—n)/x}, j=1=12,.,n, (4.1.4b)
v, =x;, j=12,..n. “4.1.5)
To obtain (4.1.4) we have used the identities

S {1 —expl2mil — p/n)} = Yn — 1), (4.1.62)
I=1

> (1= exp [2mill — j)/n]} 7 = n — XS — ),
=1

(4.1.6b)

whose proof is reported in Appendix B.

Equations (4.1.4) are the formulas that provide the
more explicit representations of the matrices Z and Z* men-
tioned in the introduction to this section. A number of ex-
plicit matrices can now be constructed, whose matrix ele-
ments are elementary functions of rational angles, and
whose spectrum and eigenvectors are known. They are ob-
tained, of course, by inserting in the results of Sec. 3 the
special choice (4.1.3) [implying (4.1.4,5)]. In particular, it is
easily seen that the results of Proposition 3.1 reproduce
Theorem 1 of Ref. 11, the matrix

Ay =1 =86 {1 +icot[(G~k)m/nl}, 4.1.7a)

[see Eq. (1) of Ref. 11] being related to the matrix N of (3.6)
[with (4.1.3)] by

A=(n—-1)I-2X'NX. (4.1.7b)
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It is left to the diligent reader to write in explicit detail all the
“diophantine relations involving functions of rational an-
gles” ' that can be easily obtained in this manner.

In the rest of this subsection we focus on the results of
Proposition 3.1, that still read

Ny =(m -1 v", m=12,..,n (4.1.8)
v =m—-1Dv" Y, m=12,..,n (4.1.9)
Xvi =y o m =121 -1, (4.1.10)
v =6, nu, m=12,.n 4.1.11)
but now with

Ny=in—=1)68, +(1 =6,)x/(x;, —x,), (4.1.12a)

Ny =An— 16, + (1 =8 )1 — exp [2milk — —j)/nl} !

>

(4.1.12b)
Z, == x '8 +(1 =800 —x)",  (41.13)
V™ = X" = exp(2mi jm/n) . (4.1.14)

The last formula, together with (4.1.3) and (1.3),
implies

v =,
and therefore (4.1.10) and (4.1.11) imply

(4.1.15)

XA —=J3/aAv" =(1=6,, v, m=12,..n.
(4.1.16)
Thus the matrices
A'=Z, AT =X(I-J/n), 4.1.17)

act on the eigenvectors v as lowering and raising
operators,

AC NV = (m— VY, m=12,.n, (4.1.182)
AUV = (1 =8, WY, m=12,..,n. (4.1.18b)

Actually, the property of acting as a lowering operator is
possessed by the operator Z independently of the special
choice of the x;’s considered here, see (3.9) or (4.1.9); and the
property of acting as a raising operator is also possessed gen-
erally by X, see (3.10) or (4.1.10), except, however, for the
highest eigenvector, that should be annihilated by a proper
raising operator acting in a finite dimensional space: a prop-
erty possessed by A“ ), with the special choice of x,’s dis-
cussed in this subsection, but not, generally, by X. The im-
portance of this will be immediately apparent. Note that
Eqgs. (4.1.18) imply that A' ~’ and A‘ " are nilpotent:

ACm =0, AL =0, (4.1.19)

The first of these equations is, of course, merely a special case
of (1.25). It is, moreover, easily seen that the three matrices
A" ) AY") and N satisfy the standard commutation rules

[ATN] = 4+ AH, (4.1.20)
and are related by

ACHIAC) N, (4.1.21a)

ACDACD =N 4T -], (4.1.21b)
implying, of course,

[AC VA =1—J. (4.1.21c)

Moreover,
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IN=NJ = —1)J, (4.1.22)
implying, of course,
[J,N] = (4.1.23)

Note that the matrix N is now Hermitian, see (4.1.12b),
and this implies that its eigenvectors are orthogonal, as can
be easily verified:

{v(ll vlm)} — i UJ‘{,”*U}'"' — mslm .
Ji=1
We now follow the reasoning of Ref. 6. We thus get the
following Lemma.
Lemma 4.4.1: The eigenvalues u of the generalized ei-
genvalue equation

M U@ WB) = uM (6B, (4.1.25)

where the two matrices M'''(8 ) and M‘*(9), of order n, are
defined by

(4.1.24)

MYB) = 2 E z ch, explilr — )6 ]

p=0g=0r=0
<[AC LAY N, s=1.2,

with Nand A' '’ defined by (4.1.12), (4.1.17), (4.1.13), (1.7),

and (4.1.3), and the coefficients cﬁ,";, arbitrary (but indepen-

dent of 8)], are independent of 8; indeed they coincide with

the eigenvalues of the (#-independent) generalized eigenval-

ue equation

(4.1.26)

R'"a=uR?a, 4.1.27)
where the matrices R'"’ and R'*’, of order n, are defined by
Ry == Z (m—1)"
X Z iy md+g—1) (4.1.28)
qmm = max(o’m - 1) (4129)
Proof: Set, in (4.1.25),
vo)= S a, explimd W, (4.1.30)

m i

and using (4.1.18), (4.1.8), and (4.1.24) obtain (4.1.27) {of
course the coefficients g, in (4.1.30) are the components of
the vector a in (4.1.27)]. Q.E.D.

We are, of course, assuming the coefficients c},), vanish
sufficiently fast as p— o0 to exclude any convergence prob-
lemin(4.1.26) and (4.1.28). Note that the commutation rela-
tions (4.1.20), together with (4.1.21a), imply that no addi-
tional generality would be implied by the inclusion of
additional terms in the rhs of (4.1.26) differing from those
now present in the ordering of the matrices A ’, A*'’, and
N.

It is of interest to consider special cases of this Lemma.
The idea is to induce, by an appropriate choice of the coeffi-
cients iy, the Eq. (4.1.28) to reproduce the recursion rela-
tions of the classical polynomials—a very easy task.

The first choice we consider is the case with all but three

of the coefficients c{), vanishing:
(h 2
Cmo =Cooy =277 Cooo = 1
e, =0 otherwise. (4.1.31)
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It is then easily seen that (4.1.27) becomes

ma,, ,, +a,_, =2"pa,,
a, =0, if m<O or m>n, (4.1.32)
yielding
a, =H,_  w/[27m -], m=12,..n,
(4.1.33)
with the eigenvalue condition
H,(u)=0, (4.1.34)

where H,(x) is the Hermite polynomial®'® of degree p. This
implies the following results.

Proposition 4.1.1: The r eigenvalues of the matrix of
order n

M(ll)(g) — 2-1/2[A( —) exp( _ i@) + A(+) exp(iH)],
(4.1.35)
with 6 arbitrary and A *’ defined by (4.1.17), (4.1.13), (1.7),
(1.6), and (4.1.3), coincide with the » zeros of the Hermite

polynomial of order n, and the corresponding (unnorma-
lized) eigenvectors are given by the formula

VIDOG) = i [272(m — 1) ] 7'H,,,_1(x/('"))

m=1

X exp(imé v, (4.1.36)

where the vectors v are defined by (4.1.14) and x{” is the
Jjth zero of the Hermite polynomial of order n:
H,(x") =0, j=12,..n, (4.1.37)

M@ WO = x"vHNG), j=12,..n.
(4.1.38)
Corollary 4.1.1.1: There holds for Hermite polynomi-
als®'” the representation

H (x) = 2" det[x] — M¥@)], (4.1.39)
where I is the unit matrix of order n, 6 is arbitrary and the
matrix M¥3(@) is defined by (4.1.35),

Completely equivalent, but slightly neater, formulas
are obtained by replacing M (8 )in (4.1.35) and/or in (4.1.39)
by

Hp)=M""9),
with

(4.1.40)

exp(2/6 y=n exp(4ip). (4.1.41)

The explicit form of H (¢ ) is displayed by (1.7).

We now give without further comments the analogous
results for Laguerre and Jacobi polynomials. The latter will
be preceded by the display of the (special) cases of Legendre
and Gegenbauer (or ultraspherical) polynomials, which en-
tail considerable simplifications.

Proposition 4.1.2: The n eigenvalues of the matrix of
order n

M%) = (1 + a)l + 2N — A lexp( — i8)
— A™[(1 + a)I + Nlexp(i), (4.1.42)
with & and « arbitrary, I the unit matrix and A'*’and N
defined by (4.1.17), (4.1.13), (4.1.12), (1.7), (1.6), and (4.1.3),.

coincide with the n zeros of the (generalized) Laguerre poly-
nomial L ¢(x),'" and the corresponding (unnormalized) ei-
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genvectors are given by the formula

VOUE) = 3 LS (5 @)expimd )V,

m=1

(4.1.43)

where the vectors v are defined by (4.1.14) and y{"(a) is
the jth zero of the (generalized) Laguerre polynomial of or-
der n:

Lep™@] =0, j=12..n, (4.1.44)

MYG W) = pavt96), j=12,..n (4.1.45)

Corollary 4.1.2.1: There holds for (generalized) La-
guerre polynomials'® the representation

L(x) = (n!) ~" det[M“(@) — xI], (4.1.46)

where I is the unit matrix, @ is arbitrary and M“(@) is de-
fined by (4.1.42).

Completely equivalent, but perhaps slightly neater, for-
mulas are obtained by replacing M‘*(¢) by L(2) in (4.1.42)
(4.1.45) and/or (4.1.46), with a arbitrary and L(a) explicitly
defined by

L@ =56, {a+n—1L(n—1Qa+n)/nl(x/a)
—in—1a/x)} + (1 =8, [(@ + n)/n]
X(x/a) — (x; —a)/lalx; —x)1}, 41.47)
with the x;’s defined of course by (4.1.3). Note that this ma-
trix L(a@) has nothing to do with the matrix L(8) of (1.4); its
relation to M*’(8), (4.1.42), is given simply by
M(6) = Llexp( — i8)]. (4.1.48)
Proposition 4.1.3: The n eigenvalues u of the generalized
eigenvalue equation (4.1.25) with
MP@G ) = A dexp( — i) + NA, (4.1.49a)
MPD@) = MPP =T 42N, (4.1.49b)
[where @ is arbitrary, I is the unit matrix of order #, and the
three matrices A *’ and N, of order n, are defined by
(4.1.17),(4.1.12), (1.7), (1.6), and (4.1.3)] coincide with the n
zeros of the Legendre polynomial P, (x),”'° and the corre-

sponding (unnormalized) eigenvectors are given by the
formula

vNE) = i P, _(Z"™) exp(im@ v,

mo==1

(4.1.50)

where the vectors v are defined by (4.1.14) and 2" is the jth
zero of the Legendre polynomial of order n:
P,@") =0, j=12,.n, (4.1.51)
M(P )(1)(0 )V(P X /)(6 ) — zj(_'l)M(P )(Z)V(P)(j)(g ) (4 152)

Corollary 4.1.3.1: There holds for Legendre polynomi-
als®'” the representation

P,(x) = det[MV(@) — xMPPD]/
det[M®(9) — MP?], 4.1.53)

where @ is arbitrary and the two matrices M"(6) and

M"#2) of order n, are defined by (4.1.49).
Proposition 4.1.4: The n eigenvalues u of the generalized
eigenvalue equation (4.1.25) with

M©O@) = (N + 24 DA exp( — i6)
+ [(N+AT)2 — {I]AC ) exp(if), (4.1.54a)
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M) = M = 2N+ A D[N+ (4 + JI]  (4.1.54b)

[where @ and A are arbitrary, I is the unit matrix of order #,
and the 3 matrices A"’ and N, of order n, are defined by
(4.1.17), (4.1.12), (1.7), (1.6), and (4.1.3)], coincide with the
n zeros of the Gegenbauer polynomial C, (x),'® and the cor-
responding (unnormalized) eigenvectors are given by the
formula

—~ - " F(m _+_ ﬂ‘ _ 1) )
VNG = (__*_z__ o -
&) "gl Fom 24— 1) o [2)]

X exp(im8)v"™, (4.1.55)

where the vectors v are defined by (4.1.14) and z{"(1 ) is
the jth zero of the Gengenbauer polynomial of order »:

CHzZ"A)] =0, j=12...n (4.1.56)
M(C )(”(9 )v(C X j)(g) — z(_")(/{ )M(C)(Z)V(C )(j)(e)
'J b

j=12..n. (4.1.57)

Corollary 4.1.4.1: There holds for Gegenbauer polyno-
mials'® the representation

n+24—1 ) det[MOV(@) — xM P
n det[M©M(B) — M) ’
(4.1.58)
where @ is arbitrary and the two matrices M‘“>’(6) and
M of order n, are defined by (4.1.54).
Proposition 4.1.5: The n eigenvalues . of the generalized
eigenvalue equation (4.1.25) with
M(J )1 )(9 )
=(B°—a)[2N + (@ + B+ DI] +2A"
X [N+ (@ + B [2N + (@ + B -]
Xexp( —i0) +2(N + aIl}N + SI)[2N
+ (@ + B +2)I]A exp(i0),
MY(9) = MY = [2N + (@ + B)T]
X[2N + (@ + B + DIJ2N + (e + B + 1],
(4.1.59b)
[where 6, a and 3 are arbitrary, Lis the unit matrix of order n

and the three matrices A' ¥'and N, of order n, are defined by
(4.1.17), (4.1.12), (1.7), (1.6}, and (4.1.3)], coincide with the n
zeros of the Jacobi polynomial P!*#)(x),*'" and the corre-
sponding (unnormalized eigenvectors are given by the
formula

W)= 3 PUE) [27(@B) explimd v,
m o= 1

where the vectors v are defined by (4.1.14) and z{""(a,8 ) is

the jth zero of the Jacobi polynomial of order n:

ciw=(

(4.1.59a)

(4.1.60)

PP 2%, B)] =0, j=12,..n, (4.1.61)
M(J )(l)(a )V(J X ﬂ(g)
= 2"(a, BIMYINING), j=12,.,n.  (4.1.62)

Corollary 4.1.5.1: There holds for Jacobi polynomi-
als”'” the representation
n+ a) det[MY'(0) — xMY'P]

, (4.1.63)
n det[M“ )(l)(e) — MY )(2)]

P((z. /3)(x) — (
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where 6, a and 3 are arbitrary and the two matrices
M@ and MY, of order n, are defined by (4.1.59).

4.2. Matrices constructed with the zeros of Hermite
polynomials

In this subsection we take the following specific choice
for the polynomial (1.1):

p.(x) = [7"2"n!] ' H, (x), (4.2.1)
where H ,(x) is the Hermite polynomial® '’ of order n. The

normalization factor has been introduced for consistency
with the results of Sec. 2, that are now applicable with

a= —w, b= 4+ o, wx)=-exp(—x?),

(4.2.2)

k” — [77.]/22 nn!] — 1/2‘

Thus, throughout this subsection, the x;’s are the n ze-
ros of the Hermite polynomial of order n,

H,(x)=0, j=12,..n 4.2.3)
These numbers depend, of course, on n, but this is not explic-
itly indicated here (for notational simplicity).

This choice yields, in the notation of Secs. 1 and 2,*

§=x, (4.2.4)
EP=2(n—1— 1x/, (4.2.5)
¢, =1, (4.2.6)
W= {27 — 1Y

(n(m —1)1}'?H,, x)/H, | (x)). 4.2.7)

Note that (4.2.6) implies that the matrix C of Sec. 2, see
(2.39), is now a multiple of the unit matrix I; thus, in this case
the matrices Z and Z coincide, see (2.38).

These equations, in particular (4.2.4) and (4.2.5), can be
combined with the results of Sec. 3. Particularly neat results
are obtained from those of Proposition 3.2, in view of the
vanishing of the rhs of (3.18b) implied by (4.2.3); the corre-
sponding formulas also match neatly the results of Ref. 3 (see
in particular Proposition 3.3 of that paper) via the relation

NH = (n — )] — A, (4.2.8)

with A defined by (I.1) and N’ by (3.14).

It is, moreover, convenient to define the two matrices
A" the three differential operators .#* * ’ and ., and the
three quantities @'  and a,, as follows:

m

AL '=Z, AV =2X-1Z, (4.2.9a)
AL =8,x T (1 — 8,00 —x) (4.2.9b)
& V=d/dx, &' =2x—d/dx, (4.2.10)
.Q/:n—l—%.q/”).q/( ! 4.2.11)
al,'=[2m-1]"7" a’=02m" m=12..n,
(4.2.12)
a,=n—1—1a " a, '=n—m, m=12,.,n.
4.2.13)

This guarantees, also notationally, consistency with the re-
sults of Sec. 2, and, up to trivial notational changes, with the
results of Refs. 4—6 [note, however, that Egs. {11) of Ref. 6

are misprinted, while Eags. (10) are correct; this accounts for
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the inconsistency of (11) with (4.2.12)]. Note that the results
of Sec. 2 go somewhat beyond those previously obtained, by
displaying the explicit connection [see (4.2.7)] between the
algebraic results in the »n-dimensional vector space and Fhe
differential and integral properties of Hermite polynomials
(indeed, all the results reported in this paper have emerged as
by-products of a research originally intended merely to clari-
fy this connection).

It is, of course, also possible to combine the special
choice of x,’s considered in this subsection with other results
of Sec. 3. For instance, Proposition 3.1 implies that the
matrix

Ny = 6jkx/2 + (1 = 8%, /(x; — x,), (4.2.14)
has the first # nonnegative integers as eigenvalues; Proposi-
tion 3.5 implies that the matrix
NG =8,142 + }(r~D— 1qlg+Dx’)

+(1 - 5jk)[qxf "o —x) T+ (x —x) %),
(4.2.15a)
NGO = (n— 18, — Ay — 14(q + 187"
+q(t =8, %7 '(x; —x,) ! {4.2.15b)
[with n even (so that x; %0, j = 1,2,...,n) and ¢ any nonnega-
tive integer less than n], has the first n — g integers as eigen-

values, and so on. These results are obtained easily using
(4.2.4), (4.2.5), (1.10), and (1.17); the first of them is not new.’

The same type of reasoning® used in the last part of the
preceding subsection can also be repeated here. It is easier to
work with the (unnormalized) eigenvectors (3.15) rather
than with the (normalized) eigenvectors defined by (4.2.7)
and (2.23), namely, using the formulas

NEGHE - ( — Py gy = 12,n, (4.2.16)

AV = o DYENm =Dy 12,
(4.2.17)

A( + )v(b')(m) — (1 __ 5m")v(H)(m + l)’ m= 1’2,”“’2.
(4.2.18)

Here, of course, N*' is defined by (3.14), A‘=’ by (4.2.9),
and v¥ " by (3.15); but with the x;’s being now the n zeros
of H,(x) [see (4.2.3), (4.2.4), and (4.2.5)]. These equations
coincide essentially with (3.16)—(3.18); but note the differ-
ence between (3.18) and (4.2.18).

In complete analogy to Lemma 4.1.1, there holds now
the following Lemma.

Lemma 4.2.1: The eigenvalues p of the generalized ei-
genvalue equation

M (8)v(8) =M >(0)¥%(8), (4.2.19)
areindependent of 6, if the two matrices M' (6 )and M* (6),
of order n, are defined by

M(l)(g) — i nii Ril CS;, exp{i(r - 3)8 1

p=0g=0r=0

XA P[ADTINTP, s=1.2, (4.2.20)

with N¥ and AC*’ defined by (3.14), (4.2.9), (1.7, (1.10),
(1.17), (4.2.3)~(4.2.5), and the coefficients '), arbitrary (but
independent of 8).
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The proof is too similar to that of Lemma 4.1.1 to need
reporting. Moreover, again in close analogy to the results of
the previous subsection, it is possible to obtain in this manner
novel representations of the classical polynomials. An exam-
ple of such results (whose proof can essentially be found in
the literature, see Refs. 3 and 6) has been already reported in
the Introduction, see (I.5). We conclude this subsection re-
porting two more such instances, namely, the representa-
tions of Laguerre and Legendre polynomials that one obtains
in this manner, in terms of determinants of matrices of order
n constructed with the » zeros of the Hermite polynomial
H ,(x). The proof of these results, as well as the derivation of
analogous formulas for Gegenbauer and Jacobi polynomi-
als, is left as an exercise for the diligent reader (and also the
derivation of analogous representations of the classical poly-
nomials—or, for that matter, any polynomials defined by
simple recurrence relations—in terms of the zeros of La-
guerre or Jacobi polynomials, on the basis of the results of
the following Subsecs. 4.4 and 4.5).

Proposition 4.2.1: There hold for Laguerre'® and Le-
gendre® '? polynomials the representations

Le(x) = (n) ' det[M(@) — x1], (4.2.21)
P,(x) = det[M' () —xM?]/det[M‘ V(6) —M‘?],
(4.2.22)

where I is the unit matrix (of order n) and the three matrices
M(8), M"'(8), and M‘?, of order n, are defined by

M(@) = — 1A exp(—i€) + (1 + @)l +2N*°

— (eI + NHNAH) exp(if), 4.2.23)
M (6) = A exp( — i6) + 2NYOAC ) exp(if), (4.2.24)
M? = 2( I+ 2N"), (4.2.25)

Here Gis arbitrary, while the three matrices N¥'and A' £ of
order n, are defined by (3.14), (4.2.9), (1.7), (1.10), (1.17), and
(4.2.3)-(4.2.5).

4.3. Matrices constructed with the zeros of
combinations of Hermite polynomials

This subsection is merely to indicate, by a single exam-
ple, the range of possibilities implied by the results of Sec. 3.
Take for instance, for the polynomial (1.1), the choice

p.(x)=H,(x)+2nH, _,(x), 4.3.1)

with » even. Thus we indicate in this subsection by x; the
zeros of this polynomial, which satisfy, in the notation of
Sec. 1, the equations

E=x+x7" j=12,..n (4.3.2)
EP= 1 [An—2)— x4+ x77], 4.3.3)

The first of these equations is taken from Ref. 12: the second
can be easily derived from the results of Ref. 12, for instance
by the technique used in Ref. 13.

These formulas may be used, in conjunction with those
of Sec. 1 [see, in particular, (1.10) and (1.17)}, to obtain more
explicit and compact expressions of the matrices Z and Z>—
hence of all the matrices appearing in Sec. 3, whose results
are, of course, all applicable.

Note that (3.18b), together with
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H (X)= —2nH, ,(X), (4.3.4)
[implied by (4.3.1)] and (3.18b), yields

2X — Zy = _2pyiher - (4.3.5)
and this, together with (3.17), gives

Xy = =, (4.3.6)

There is, however, no neat way to define a proper “rais-
ing” operator, namely a matrix having the property (3.18a)
and, in addition, annihilating v

4.4. Matrices constructed with the zeros of Laguerre
polynomials

In this subsection we take for the polynomial (1.1) the
choice

p.(x)=(=)[F(n+a+1)/n] ?’Lix). (44.1)

The normalization constant is introduced to make the nota-
tion consistent with that of Sec. 2, with in addition

a=0, b= o, wkx)=x"exp(—x),
k, = [F(a + 1)(" :‘a)] ey (4.4.2)

Thus, throughout this subsection, the x;’s are the n zeros of
the (generalized) Laguerre polynomial'® of order :

Li(x)=0, j=12,..n (4.4.3)

These numbers depend, of course, on n and a, but this is not
explicitly indicated here for notational simplicity.
This choice yields, in the notation of Secs. 1 and 2,?

&=101-0+a/x] (4.4.4)
EP= — L[1=22n+1+a)/x + @+ 1I)a+5/x],
(4.4.5)
¢ =x" (4.4.6)
3 n—m( x; I (n +a)lm —1)! )‘”L‘fnl(x,-) _
wn =) (n + &)l (m + ajn! ©(x)
(4.4.7)

These equations, in particular (4.4.4) and (4.4.5), can be
combined with the results of Sec. 3. The neater results obtain
in connection with those of Propositions 3.3. and 3.6. Their
relation to the results of Sec. 4 of Ref. 3 is given by the
formula

N = (n — 1)l —2XBX (4.4.8)

where N *? is defined by (3.20) and B by Eq. (4.4) of Ref. 3.
The results of Ref. 7 are, moreover, reproduced, with the
following notational correspondence:

(4.4.9)
(4.4.10)

A=1C '[(n—DI-N"]C,
A‘“:C”L‘“C,

v(m) — ( . )n [ [r(a + m)/(m . 1)[] - 1/2C - lv(L)(m),
4.4.11)
with [see (4.4.6)]
C=X" (4.4.12)

The matrices and vectors in the lhs of (4.4.9), (4.4.10), and
(4.4.11) are defined in Ref. 7, while those in the rhs are de-
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fined in the present paper, see in particular (3.20), (3.25), and
(3.21) [the latter, of course, with (1.4) and (4.4.1)]. Finally,
the results of Sec. 2 are also applicable, with the orthonormal
set defined according to (4.4.1) and (4.4.2) and the quantities
u'} and ¢; defined by (4.4.6) and (4.4.7); the appropriate
definition of the operators .7 and .«/* ' ' of Sec. 2, such that
the matrices A and A' ™’ of Sec. 2 coincide with those intro-
duced here, (4.4.9) and (4.4.10), then read

o =1n—1—(x~1—a)d/dx+xd?*/dx’], (4.4.13)
A "=+ a+xd/dx)d/dx, (4.4.14a)
o= —2xd/dx — (1 + a)l —d /dx) + x(1 +d*/dx?),

(4.4.14b)

namely, they are just (up to a sign; see below) the translation
into differential operators (according to the simple rule
X—x, Z—d /dx) of the matrices

A=CAC '=[(n— I - N"], (4.4.15)
A= —CAC = — L, (4.4.16)

as implied by Proposition 2.1. The corresponding values of
the quantities @' ¥’ and q,, are

a, '=[m—-Dim—-1+a)]",

al, ' = [m(m + a)]'?, (4.4.17)
a,, =¥n—m), (4.4.18)
consistently with the differential formulas
A, x) =, p, X (4.4.19)
Ap, \(X)=a,p, ,(x), (4.4.20)

where, of course,
p,xy= (=) (p+1+a)pl] "*Lix), (44.21)

and with the corresponding vector formulas,’

A( )v(m) — a( )v(m I),

A( + )v(m) — [a(mﬂ Yy 5

(4.4.222)

a(”+ )]v(m + l),m = 1’2,‘..,’1,
(4.4.22b)

Av(m) =a v("‘l). (4.4.23)

m

m=12,..,n,

mn

Here the vectors v'"™ are defined by (4.4.11), and it is easily
seen that this definition is consistent (up to a sign factor)
with that of the normalized vectors of Sec. 2; indeed

vV =(=)" (4.4.24)

[see (4.4.11), (4.4.7), and (2.23)]. Note the consistency of the
sign factor in (4.4.24) with the minus sign in (4.4.16).

Let us emphasize again that here, besides reproducing
the results of Refs. 3 and 7, we have clarified their relation to
the general theory of orthogonal polynomials by displaying
the connection with the treatment of Sec. 2.

As in the case of Hermite polynomials, see Sec. (4.2), it
is of course possible to combine the special choice of the set
x; considered in this subsection with other results of Sec. 3
besides Propositions 3.3 and 3.6; but this is left as an exercise
for the diligent reader.

mﬁ( m]’

4.5. Matrices constructed with the zeros of Jacobi
polynomials

In this subsection we limit our presentation to provid-
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ing, without commentary, the formulas needed to relate the
treatment given in this paper with the results of Ref. 3 in-
volving the zeros of Jacobi polynomials. Thus we set

a+ B +1 —1/2
P,,(x)=( 2 Frn4+a+Dr'n+B+1) ) 4
@uta+B+Dnr(n+a+B+1)
X P@P)(x), 4.5.1)

implying of course that in this subsection the numbers x; are
the » zeros of the Jacobi polynomial of order #,

P*Fx,) =0,

j=12..n (4.5.2)

The results of Sec. 2 are then applicable for the orthon-
ormal set of polynomials

i —( ZL L p et DE(p1BLD )2
@p+a+B+Dp(p+1+a+p)
X P EPA(x), (4.5.3)
with
a=—1, b= +1, wkx)= 1 —x)*(+xy,
k,=[2"** ' \Qnta+ B+ (n+1+a)
XM(n+14+B8)(n+1+a+B)]"
XTQn+2+a+f), (4.5.4)
¢, = [0 —x)n/Q@n+1+a+B)]" (4.5.5)
u =i2n+a+pB)
xX{[@m+a+B—1)(m—1)
Xr(m+a+BY (n+a)(n+p)]
Xrn+a)n +B8) I (n+a+B+1)
XI'(m+ o) (m +B)] "}
X (1= x)V2PEP (x,)/PEF) (x,). (4.5.6)
There hold, moreover, the relations?
§ =ta—B+@+B+2)x1/(1 —xD), 4.5.7)

£ = &4 —D@+B+n+2)—(@—BY
—2a—BYa+B+6)x, — [4n(a+B+n+1)

+@+B+2a+B+6)1x}/(1 —x)), (458)
implying (after a tedious computation)
F=1C*[(n—Drn+a+pB)I-ND]C, (459)

with I the unit matrix, N¥? defined by (3.30), C defined by
(2.39) and (4.5.5), and with the matrix I" defined by

Ly =68, Y"1 = x}/lx; — x, )
=1
— (1 =6, —x7)/(x, —x.)% 4.5.10)
Thus I" coincides with the matrix C defined by Eq. (5.4) of
Ref. 3, and Eq. (4.5.9) provides the connection with the re-
sults of Ref. 3.

5. OUTLOOK

Several directions of further research are naturally sug-
gested by the results reported in this paper.

In the first place the limit of these results as n— oo
should be studied. In this manner it should be possible to
obtain results on the spectrum of infinite matrices such as
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those discussed in Ref. 3 and on the properties of integral
singular operators such as those considered in Ref. 14. Par-
ticularly interesting should be the relationships that shall
thus arise between differential operators, infinite matrices
and singular integral operators.

Secondly, the results of this paper suggest investigating
the use of the matrix Z as an (approximate) representation of
the differential operator in the context of numerical analysis
and of the problems of interpolation, of mechanical quadra-
ture, and of the numerical solution of (differential and inte-
grodifferential) eigenvalue problems. In the latter context
the extension to more than one variable is also appealing.

The question of confluence should also be considered,
namely the limiting form taken by the results of this paper
(see in particular Secs. 1 and 2) if two, or more, of the a priori
arbitrary (but different) numbers x; coalesce.

Let us finally note that, in this paper, nothing has been
said on the “inverse” problems in which a matrix, having a
certain structure that defines it in terms of a set of numbers,
is required to have a given spectrum, and this requirement is
supposed to determine the (a priori unknown) set of num-
bers. We know, of course, that in some cases this problem
has either no solution or too many solutions; for instance, the
requirement that the matrix N, of order n, defined by (I.3),
have a given spectrum, has generally no solution, unless the
spectrum coincides with the first » nonnegative integers, in
which case no restriction at all is implied on the numbers x;.
On the other hand, it has been conjectured'-* that the re-
quirement that the matrix A, of order #, defined by (L.1),
have the first # nonnegative integers as eigenvalues, implies
that the numbers x; coincide, up to a common additive
constant, with the n zeros of the Hermite polynomial of
order n; and many analogous conjectures’® can be plausibly
formulated [for instance, in terms of the matrices defined by
(4.2.14) or (4.2.15)]. All these conjectures stand; and, while
the hope that the more general approach developed in this
paper provides a handle to prove or disprove them appears
reasonable, so far I cannot report any substantive progress.
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APPENDIX A

The main formula to prove is (2.9). For j # k the proof is
easy: the definition (2.7) implies
3

1751/)- P X)) =q, , x)p, (x), (A1)

g, ., being a polynomial of degree n — 2 and being, there-
fore, orthogonal to p, (x) [see (2.1)]. Forj = %, it is conve-
nient to assume that (2.9) holds, since this can always be
enforced by appropriate choice of the normalization con-
stants c; in (2.7); the actual evaluation of ¢;, namely, the
proof of (2.8), is postponed. The formulas (2.10), (2.11), and
(2.12) are obvious. It is then convenient to go over to (2.17)
and (2.18), while define «'?, and to notice that these formu-
las, together with (2.1) and (2.9), imply (2.19) and (2.20).
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Then (2.13a) is proved, using (2.17)-(2.20); (2.13b) follows,
using 02.2); next follows (2.14), in an obvious way, (2.15)
from (2.13a) and (2.11b), and (2.16) also trivially; and then
{2.21] follows, from a comparison of (2.15) with (2.17). Now
inserting (2.21) in (2.19) and using the formula

i Pm 1 (xj)pmAl (x)

m=1
= ‘Sjk (k,_,/’k,)p (xj)Pn -1 (xj)9 (A2)

which is a special case of (2.2) and (2.3), we finally obtain
(2.8). The proof of the remaining equations is plain: (2.27)
and (2.28) follow from (2.26), using {2.17)~(2.20) and (2.23)
and in a similar manner (2.30) and (2.31) follow from (2.29);
{2.33} follows from (2.27), and similarly (2.34} from (2.30).

APPENDIX B
The proof of (4.16a) is trivial :

> {1 —exp[2mil — /i)t

=1

= nil [1— expQmil /n)] 1, (B1)

'S 11 — expQil /m)] !
=1

=n—1+ nil [1 — expQmil /n)] ~'exp(2mil /n)
{=
1 (B2a)

=n—1-— "2] [1 — expQmil /n)] .

I=1

(B2b)

The step (B1) is obtained by replacing the summation
index / with I’ = [/ — j, and using the cyclic property. The
step (B2a) is obtained by multiplying the summand by
[1 — exp2mil /n)] + exp(2mil /n); (B2b) is obtained by re-
placing the summation index / by n — /, and it clearly yields
(4.1.6a) - QED.

The proof of (4.1.6b) is also plain:

i {1 — exp[2mill —jyn}}?

I=1
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=S (1 — expQail /m)] *, (B3)

n- 1
S (L —expQmil /n)] 2
R

=4irh-DH+ "21 [1 — exp(2mil /n)} 2

=1

X exp(2wil /n) (B4a)
= 1= = 1S [sin(rl /m)] -2 (B4b)
=1(n—1)— L@ ~1). (B4c)

The steps (B3) and (B4a) are analogous to (B1) and (B2a);
{B4b) 1s plain; (B4c) is obtained from Egs. (14) and (8) of
Ref. 11, and it yields (4.1.6b) . Q.ED.
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All representation functions of IU{n) have been found in explicitly closed form. They are obtained through
the contraction of U(n + 1) or U(n,1). These expressions are closely connected with the generalized beta

functions of Gel’fand and Graev.

PACS numbers: 02.20.Rt

I. INTRODUCTION

In a previous paper,' we have obtained an explicit ex-
pression for the representation functions of ISO(n). In
this paper we show how the representation functions of
IU(») can be explicitly obtained.

The method used in this paper, however, is quite dif-
ferent from that of Ref. 1. Whereas in the case of
ISO(n), we obtained the representation functions through
the method of induced representations as given by Wolf?
in the form of an integral, we find that this method is
not easy to use in the case of IU(n), even though Wolf®
has in fact given an integral expression for IU(n). In
Ref. 1, we mentioned that the representation functions
of ISO(») can also be obtained from the contraction of
the representation functions of SO{xn+ 1) or SO(»n, 1),
through Wigner’s method.** We showed there explictly
how the d-functions of ISO(2) and ISO(3) can be obtained
from the d-functions of SO(3) and SO(4) respectively
through the process of contraction. In a future publica-
tion we shall show that this contraction process, when
applied to ISO(»), will lead to a new result different
from that in Ref. 1, in that the representation functions
of ISO(n) are expressible as sums over a confluent
hypergeometric function | F, with argument 2jy£. This
contraction process is also valid when applied to IU(n).
In other words, we are saying that IU(x) can be con-
sidered as derivable from U(n+ 1) or U(x, 1) through the
process of contraction. In the case of IU(»), we find
that this method of contraction is much easier to use
than the method of induced representation through inte-
gration. Thus we intend to show in this paper how an
explicit expression for the representation functions of
IU(n) can be obtained from contracting the representa-
tion functions of U(n+1) or U(x,1).

There are at least two different ways of writing the
representation functions of U(xn): one by means of the
Weyl! coefficients,® and the other by the generalized beta
functions of Gel’fand and Graev.” The first one, how-
ever, cannot be easily extended to U(n, 1), whereas the
second one can be extended to U(n, 1), as done by
Klimyk and Gavrilik.? If the contraction process is to
give meaningful results, the representation functions
chosen to be contracted must be applicable to both
U(n+1) and U(x,1). Thus we must use the representa-
tion functions givenby Gel'fand and Graev. The final ex-
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pression we have obtained for the representation func-
tions of IU(»n) is in terms of powers of k&, summed over
n variables. Here « is the same continuous variable
used by Chakrabarti,” and |« |? is the eigenvalue of the
second order Casimir invariant of IU(x), i.e.,

A(z):zll’i”l[:-d: [ [*. (1.1)
.

£ is the same variable used by Wolf.® It represents
translation in the » direction. This expression is con-
vergent for all values of x and £, and can also be ex-
pressed as a finite sum over a generalized hypergeo-
metric function ,,_,,F,,, for IU(n). It is interesting to
note that this expression is quite different from that of
1ISO(n), n>2, where, as we have shown in Ref. 1, the
representation functions are expressible as a summa-
tion over Bessel functions. The only exception, of
course, is in the case of IU(1) which has the same form
as that of ISO(2), i.e., as an ordinary Bessel function.

In Sec. II, we discuss briefly the representation the-
ory of IU(»), and its relation to U(n+1) and U{x,1). In
Sec. III, we calculate explicitly the representation func-
tion of IU(1), which is somewhat special, because it
has the same form as ISO(2). In Sec. IV, we calculate
explicitly the representation function of IU(2). In Sec.
V we obtain the general representation functions for
all 1U(»n).

Il. SUMMARY OF THE THEORY OF
REPRESENTATIONS OF 1U(N), UV + 1),
AND U(NV,1)

The main results connecting the representations of
IU(n), U(n+1), and U(n, 1) are contained in a paper of
ours.!® Here we shall mention only those formulas and
notations that are necessary for the understanding of
subsequent sections.

For IU(n — 1) we denote the basis state by

Mom """ Mpa,n
My ey M gy * " M) ey
(2.1)
mya
For the continuous variable we use k according to
© 1981 American Institute of Physics 935



Chakrabarti.” [See Eq. (1.1).] For U(n) we denote the
basis state by

ml,nn72,n o 'mn,n
My, 1 B (Y

(2.2)
"1

For U(n -1,1) we denote the basis state also by (2.2)
with the understanding that, for the principal continuous
series,

my, = =n=1)/2+2,

My =(n=1)/2+2%. (2.3)
The contraction process then goes as follows:
For ISO(n), we showed in Ref. 1 that
my, ,a8=vE, and m, ., —. (2.4)
A similar result is found for IU(n) (see Wolf®), i.e.,
eb=ktand e~ , (2.5)
where ¢=Imz. This is equivalent to
Wy g 10
and (2.6)
_
10 10 10
b(6) = 1 01 01
1 0 cosf 0
tang 1 0 (cosf)?

where t=tané.

The d-functions of &(I + te, ,.,) and b(I + te, ) have
been given by Gel’fand and Graev.” They can also be
expressed in terms of the isoscalar factors of U(n) and
U(n - 1) for the totally symmetric representations; as
shown by Louck and Biedenharn.'

Thus for IU(1), we have
dm™2 ™22(8) ~ g~

LS TRET

€0=kKE,

(3.4)

""u"'u( 8,

€~
Now we write the d-function of U(2) according to (3.3),

i.e.,

d™zam2z(9) = dMeam22(] + te
""u”‘u( ) mzu ""u"'i'x( z)

X dmizrm2z(by(6))d™ 22 ] — fe,,). (3.5)
MM ™imn
According to Louck and Biedenharn,
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My, = =1

Then the only formula one has to use in the contrac-
tion process is the one given by Talman'':

LLnl[(n +/))!(n+q)!]:},_i}2(n)"°. (2.7)

{1l. EXPLICIT EVALUATION OF THE
REPRESENTATION FUNCTION OF 1U(1)

Before going to the particular cases, we would like to
derive the d-functions of U(n) according to the method
of Gel’fand and Graev.

Any element g of U(n) can be decomposed uniquely as

g=ha(p)b()h, (3.1)
where a(¢) and b(6) are the matrices

10 10

alp)= 0 1 s b(ey=| 0 1

i cosf® -sing
sinf cosé6

(3.2)

h is the most general element of the subgroup U(n - 1),
and & is a special element of U(n —1). But 5(8) can be
further decomposed as follows:

=b(I+te, . )b(0)B(I —te,, ),
—tand ! '

! (3.3)

r

L/2

dmama(] + te,;) = [mm”’ e
mipmyiy M,

Sar{my gy Mooy M11)SoalMy 2, Mga; MLz, Mow)

X
Salm{y, 03m,,)S55(m 5 my0s myy, 0)

Sulmi mi1)

(M 3.6)
Sy, (myiysmyy) (
where
n ]
E)Il=II(mi,,+n—i)/n(mi,,—mj,,+j-i), (3.7)
isl i<i
m ok V2
IT 1 (kg - g+ o = s)!
Snm(h!.' . 'hn; ql' 'qm) = n=1 k=lns=l
L 1 (g = hy+ s~k -=1)!
b=l S=zk+l
(3.8)
d™2m22(bo( 0)) = (cosh)™ir(cosh) ™2 ez L (3.9)
mpmn
Moo — my om
dzifm?,j(l +ley)= AT+ leyy)- (3.10)
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If we write out (3.5) explicitly, we obtain the d-function
of U(2) a

dmzmz2(g) = Z [ m12—mu )1 0myp = myy)! ]1/2

miymiy = mg) 1y = Mp5)}

m, - my,) 1{(=1)" -
(myo —mi) Hml —my) Hom{y —my )!

X (COS6)™L ML =mia=May(gin g)2m{i—myy~miy
(3.11)
This formula with 8 replaced by /2 is in agreement
with the d-function of U(2) as given by Rose,'? Eq.
(4.14).

Applying the contraction process and Eq. (2.7) to Eq.
(3.5), we obtain the d-function of IU(1):

0-3 :
my'y (mu - my M my - ’”{1)!

X (=1)m (e )2 M

’"umu
(3.12)
By redefining m = m;, —m{, we find

1
TACE >
mumu(g) s (m+ m), =g )

X (=1)mmim (g £)2mmiT
= (—1)’"i1“"‘11Jmh_mu(2K§)
m“_mu(2l<§) (3.13)

This result, of course, can also be obtained by con-

tracting the Jacobi polynomial, as we pointed out in

Ref. 1, Eq. (2.7). Thus if we write the d-function of
U(2) in terms of the Jacobi polynomial:

. , - AT ¢ i/2 ,
)= (=tyrom [N =) gyt
(j+ mi (G =m)
X (sing/2)™ =" p{memm ™) (cosg) (3.14)

we can use the contraction process [Ref. 13, Eq. (41),
p. 173]

I}Ernlen'“Pj,“'B’(cos(z/n))=(z/2)'°‘Ja(z) (3.15)
and obtain
(s o (&) =T oy (2KE) . (3.16)

Note that in Eq. (3.14) we have added the phage (-1)""™
to the d-function of U(2) as given by Edmonds, Eq.
{4.123)."* This is because the d-function of Edmonds
differs from that of Rose by the phase factor (-1)™"
Also it is obvious that g in Eq. (3.14) is equal to 26 in
Eq. (3.11). This explains the factor 2x£ as the argu-

ment of the Bessel function in Eq. (3.16).

The result of [U(1), of course, reminds one of the
representation function of I50(2), which is of the same
form. However, one must not conclude that the repre-
sentation function of IU(n) will be similar to those of
ISO(n), as we shall show in subsequent sections. Ina
sense, therefore, IU(1) is a special case.

IV. EXPLICIT EVALUATION OF THE
REPRESENTATION FUNCTION OF 1U(2)

For the case of IU(2), we start by writing down the
d-function of U{3) according to Eq. (3.3).

dm13m2smas 8)
my omaami omy,
myy My

E dm™smesmss ([ + tanoesz)(c()s9)"‘12‘"‘22’"‘11
m my pMgaMy M
12™M52 my myg

% (C088)™2 ™22 M3 ™23 Masd™3M23™33 (] ~tanbe,,).
My gMsoMy oMoy
T My

(4.1)

The d-functions of (I + te,,) and (I —te,,) have, in fact,
been explicitly given by Gel’fand and Graev.” Note that
their basis is modified by a factor A(m) given in Eq.
(2.2) of their paper. Thus Eq. (4.1) can be written down
explicitly. The important point we wish to make is that
in the contraction process, the terms containing in-
finity all cancel out. To demonstrate this, let us pick
out from Eq. (4.1) only those terms which approach in-
finity, i.e,, terms containing m , and n,,. Then we
have

[(77213 - mlz)!(mm =maz+ 1) Wi — iz + 1)!(7"15'2 ~ Mas) ! /2
(mys = m ) myy = mlly+ 1)Uy = 55+ 1) 100 5y = 155) !

mi' 5+myoumMoo=m
X(%) i 2+M3g=Maa=my » (4.2)

and a similar term with m,, and m,, replaced by m/,
and mj, respectively. It is clear that by applying the
limiting process of (2.5)—(2.7) to {4.2), we find that
(4.2) is reduced to

(KE)miz*miamp™man | (4.3)

Thus all terms containing infinity drop out.

Thus we obtain the representation function of IU(2)
explicitly as follows:

Igemay £)= (mas —mzz)!(mu — M) (Mg — mde) iy —mgo)! L2
mgm2ami omiz (M = M) Vimy, =my )1 (m], — mgg) Hmy, — )1
11 11

X (Mg =gyt myp =miy+ 1)V 2

X E (mfy =mp) Vo' = my ) Vmyy = m ) Vm{, = mi) my', = mg;+ 1)
my pmiss (mgy = m ) Hmyy = m ) Hmlly = mop+ 1) (myy = miy+ 1)1, = my,)!
1

(] - m,Lz)!(mgz - 55) L gy —mf,) !

(k£ )P 2™ my o Moy 5 MGy MG, (4.4)
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Equation (4.4) can be rewritten in different forms as
sums over a generalized hypergeometric series. From
the expression in (4.4) it is easy to see that the sum-
mation over my’, is an infinite sum, while the summa-
tion over m, is finite, It is easy to check that the ex~
pression in (4.4) is convergent for all values of x and
£, We shall see in the next section that the two proper-
ties mentioned above are applicable to all the repre-
sentation functions of IU(n), n>1. The two properties
are: (1) The representation functions of IU(xn) are con-
vergent for all values of x and £ (2) They can be ex-
pressed as sums over generalized hypergeometric
functions.

V. REPRESENTATION FUNCTIONS OF tU(n)

The process we have used for IU(1) and IU(2) can be
generalized to IU(x). The d-function of U(n+1) is writ-

ten as
{m Z ml Wi=W
d[m]”f}n] (9) r d[ "*1 ,]n (I + te"*ly ")(cose) m et
m”
[m],,_lfm],,-,_ In [m],,_ltml,,_l
X dt™ an -
d[cmu],,tm,l,. (I—te, ), (5.1)
(L OPSTLOPS]
where
n n=1
w,= LT -Z My e

izl j=1

For the d-functions appearing on the right-hand side
of Eq. (5.1}, we can use the expression obtained ex-

plictly by Louck and Biedenharn.!!

tml,
dimy" 1[mln1 (I+te, .)=dimr nIml, L, (I+te,.,, )
[m) —olml,_ [m] —olml

_ M ], 2 m], | b, 0 m'],..0
[b!b’!m([m]"_l)] <lm]n-l 0 1 |ml,, >
e | 9750 I\
* [mez 0 lmJn'Z o (5-2)

where the measure J1 is given in Eq. (3.7), and
[m], | 5,0 | [m'],

] ] O | lmlan

=(p1)*

< Sun-t{M e o Py gy Mrpere « o PHnm1,nm1)
S I S P N
Snn(mln- o« e Wpny Min- - -"nrm)
( o (5.3)
Snn mln' . nn’mln * ‘n7nn

n-1

n n=1
- ’ 4 _ 1
b-}: min'zmi,n-u b —Zmi,n-l"E:’”i,n-x
i=1 i=t i=l i=l

S is given in Eq. (3.8).

It is then found that the contraction process goes
through for all IU(x), because the terms containing in-
finity all cancel out. Therefore, the representation
functions of IU(»n) can be obtained explicitly from those
of Uln+1) as given in Eq. (5.1) by omitting all factors
containing m, ., and m_, .., and replacing cosd by 1
and sinf by x¢, The final result of the representation
function of IU(n - 1) is

3
I gemg.. 1, n(£) = N([m ] ) &mx([ Lns [90] me) T ™[ | my [ ] W) Ty s [12 ], 12" ] e1)
%ﬂﬁ B Ol T, D72 S, (T 05 1,08, (B 1,105 ]
« 5121-1,n-z( [Wl"]n-l, [m]n-z)srzr-l,n"l.( [m"]nq [m”]n-l)
Trzm ([m]n; [Wl ”]n-l’ O)Sn-l, n-2( [m] n=1 [m ] n-Z)Sn-l,n-Z( [ml]n-). [’Vﬂ ] n-2)
X 1 : (K:é)zE[m"]n_l-E[m’]n_l—)l[m]n_l ,

Spa, et [ ] et [m] n-l)Sn-l, ([ ] gy [ ] 1)

where 3 and T are obtained from 97 and S respectively
by omitting all factors containing m,, and m,,. The
summation over m”,,_, is an infinite sum, while the
summation over the other indices are finite in accord-
ance with the branching rules of U(»x). Again, we find
that (5.4) has the following two properties: (1) It is
convergent for all values of x, £. (2) It canbe expressed
as a sum over a generalized hypergeometric function

3(n-2)F3n-5'
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A general mathematical framework for the super Lie groups of supersymmetric theories is
presented. The definition of super Lie group is given in terms of supermanifolds, and two
theorems (analogous to theorems in classical Lie group theory) are proved. The relationship of the
super Lie groups defined here to the formal groups of Berezin and Kac and the graded Lie groups

of Kostant is analyzed.
PACS numbers: 02.20.Sv, 11.30.Pb
1. INTRODUCTION

Several recent theories, notably supersymmetry,’ su-
pergravity” and also superunified theories of weak and elec-
tromagnetic interactions® have considered multiplets of
fields transforming under a rule which is expressed infini-
tesimally by a graded Lie algebra with infinitesimal Grass-
mann parameters. The assumption is that the graded Lie
algebra is the algebra of infinitesimal generators of some *‘su-
per Lie group”; such groups have been constructed by ex-
ponentiation of the algebra using the Baker-Campbell-
Hausdorff formula,* or exponentiation of matrix representa-
tions of the algebra.’ The nature of the infinitestimal param-
eters suggests that a global super Lie group should be a space
with local coordinates in a Grassmann algebra, i.e., a super-
manifold, and thus one is led naturally, by analogy with the
definition of a conventional Lie group, to a definition of a
super Lie group as a group which is also a supermanifold,®
with superanalytic group operation. This approach is ex-
plored in detail in this paper, and provides a general math-
ematical framework for the groups mentioned above. The
graded Lie algebra of infinitesimal generators of a super Lie
group appears in a manner exactly analogous to the Lie alge-
bra of infinitesimal generators of a conventional Lie group.
The supermanifolds used in this definition are those of Ref.
6; because such a supermanifold is a topological space, the
formulation of super Lie groups given here naturally in-
cludes global topological properties. It should now be possi-
ble to consider whether or not the global properies of super
Lie groups have physical implications analogous to those of
conventional Lie groups.

Super Lie groups derived from graded Lie algebras
were first considered by Berezin and Kac, in a mathematical
context, some years before the physical theories mentioned
above; in their paper “Lie groups with commuting and anti-
commuting parameters,”’ they give a definition of a formal
(super) Lie group. Subsequently Kostant has given a defini-
tion of a graded Lie group.® Neither the formal groups of
Berezin and Kac nor the graded Lie groups of Kostant are
actually abstract groups, unlike the super Lie groups defined
in this paper. These super Lie groups bear the same relation-
ship to the formal groups of Berezin and Kac as do conven-
tional Lie groups to the formal Lie groups first introduced by
Bochner.® The graded Lie groups of Kostant can be included
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in the super Lie group formulation given here in a natural
way (as is explained in Sec. 6 of this paper).

Section 2 of this paper contains the definition of a super
Lie group. In Sec. 3 it is proved that the left invariant vector
fields on a super Lie group form a “graded Lie module” (an
extension of the concept of graded Lie algebra), while Sec. 4
contains several examples of super Lie groups and their cor-
responding graded Lie modules. In Sec. 5 it is proved that,
corresponding to any graded Lie module, there is at least one
super Lie group, and a means of identifying all super Lie
groups with some specified graded Lie module is given; thus
the problem of classifying super Lie groups is reduced to the
problem of classifying graded Lie modules. In Sec. 6 it is
shown how the set of Kostant graded Lie groups can be iden-
tified with a subset of the set of super Lie groups in a precise
and natural way.

In this paper attention is confined to real super Lie
groups, that is, the Grassmann algebras and graded Lie alge-
bras used are all algebras over the real numbers. Extension to
algebras over the complex numbers is possible. Notation re-
quired for certain algebraic results in Secs. 3.5 and 3.6 is
defined in the Appendix.

2. THE DEFINITION OF A SUPER LIE GROUP

The parameters of the infinitesimal transformations in-
dicate the nature of the local coordinates of a super Lie
group: when the graded Lie algebra of infinitesimal transfor-
mations is (m,n)—dimensional, the parameters are m even
and n odd elements of a Grassmann algebra, and thus a space
with this type of local coordinate, i.e., an (m,n)-dimensional
supermanifold, is suggested. The definition of a super Lie
group is a straightforward generalization of the definition of
a conventional Lie group.

Definition 2.1: An (m,n)—dimensional super Lie group is
a set H such that

(a) the set H is an abstract group,

(b) the set H is an (m,n)—dimensional superanalytic
supermanifold,

(c) the mapping (A ,,h,)—h h, " of the product super-
manifold H X H into H is superanalytic.

Here the definition of supermanifold and superanalytic
are those given in Ref. 6, briefly summarized below. (B, ™"
denotes the Cartesian product of m copies of the even part
and n copies of the odd part of B, , the Grassmann algebra
over R%)
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Definition 2.2: An {m,n)—dimensional superanalytic su-
permanifold over B, is defined to be a Hausdorff topological
space Y together with a set of charts {(U,,¥,,)} such that

(aju, U, =7,

(b) each ¢, is a homeomorphism of U, onto an open
subset of B, ™",

(c) the functions ¢, ¢, "¢, (U,nUy >, (U,nUpg) are
superanalytic, where in (b} the topology on B, ™" is the usual
toplogy on B, ™" regarded as a finite-dimensional vector
space, and in (c), if Uis openin B, ™", then f:U—B, issaidto
be superanalytic on U if, given any p = (p,,...,p,, , ,) in U,
there exists a neighborhood ¥ of p such that, for all g in N,
[fg) is equal to the sum of an absolutely convergent power
series of this form:

fa= S g la—p)e-

k=0 Kk, =0
{

(2.1)

k
ot _pm+n) m

(witheacha, .,  anelementof B,).
The concept of superanalyticity can then be extended to
maps between manifolds, via charts, in the usual way.

In Ref. 6, B, an infinite-dimensional analogue of B,
was defined, so that it is possible to define supermanifolds
and super Lie groups over an infinite dimensional Grass-
mann-type algebra.

For future reference, some definitions and results ori-
ginally given in Ref. 6 are summarized here.

Definition 2.3: (a) If Uis, openin B, ™" and fU—B, , fis
said to be **G < on U if, given (a,,...,.q,, , ,) and
(@, +hynay ., +h,.,)inl,

f(al +hl""’am+ n +hm4 n)

m+4n
=f(al!""am+n) + Z thk f(al?""am+n)

K=

+ O hiyesbt o I (2.2)
where the partial derivatives G, fare in turn G = functions
of Uinto B, .

(b) If V' is an open subset of a supermanifold Y, then
G = (V) denotes the set of G  functions of Vinto B, [i.e.,
functions f:V—B, such that foy, ~ "¢ (VnU,}—B,  isG ~
for any chart (U_,¥,)].

Proposition 2.4: G = (V') is a graded commutative alge-
bra and a graded left B, -module.

Definition 2.5: A vector field on V' is a vector space en-
domorphism X of G =(V ) such that, givenf,gin G *(V')and b
inB,,

X(f5)=&flg+(—1* ‘”J‘Xg]
X (bg)=(— 1)"'*lbXg,
{where | X |, | f| and |b | represents the degree of X, £, and b,
respectively).
In view of the similarity between Lie groups and super
Lie groups, many of the results of conventional Lie group
theory extend to analogous results in super Lie group theory.
as will emerge in succeeding sections.

3. THE GRADED LIE MODULE OF A SUPER LIE GROUP

It is a well known result of classical Lie group theory

(2.3)
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that the left {or right) invariant vector fields [sometimes re-
ferred to as infinitesimal right (or left) translations] form a
Lie algebra. The analogous result for super Lie groups is that
the left invariant vector fields form a “‘graded Lie module.”

Definition 3.1: A graded Lie left B, —-module is a graded
Lie algebra W (over R) which is also a graded left B, -module
such that

[6X,.X5] = b [X,,X5]
forallbinB,, X,, X, in W.

Definition 3.2: A graded B, ~module is said to have di-
mension (m,n) if it is a free module with a basis consisting of
m even and # odd elements. (It can be shown that the dimen-
sion is well defined.)

Many, but not all, of the graded Lie modules considered
in this paper are of the form W = B, ® ,g where gis a grad-
ed Lie algebra over the real numbers,

@eX),be )] =(—~1)"*"*ahe[X,¥]

(3.1)

(3.2)
and
abeY).=abeY

(foralla, bin B, and X,Y in g).

If g is an (m,n)-dimensional graded Lie algebra, then
B, ® zgis an (m,n)-dimensionl graded Lie left B, ~module.
If W~B, ® g8~B, ® zg then g~g', so that the decompo-
sition is unique.

Definition 3.3: (a) Let H be a super Lie group and »eH.
Define

5,:H—H by 8,(h"): = hh' for all h'eH. (3.3)

(As a direct consequence of the definition of a super Lie
group, &, must be superanalytic.)

(b) Define §,,. to be the induced mapping of vector
fieldson H, i.e.,

8, (X )f = X (f08,) for all fin G=(H). (3.4)

(c) A vector field X on H is said to be “left invariant” if
S, X=Xforall hin H.

Equipped with this definition, the proof of the main
theorem of this section proceeds very much as in the classical
case.

Theorem 3.4: Let Y| H ) denote the set of left invariant
vector fields on an (m,n}-dimensional super Lie group over
B, . Then .7’ (H )is an (m,n)—dimensional graded Lie left B, -
module with bracket operation

L:-L(HYX LH)—>F(H)
(3.5)
(X,Y]:=XY — (—1)XIVIYX, X, Ye.r(H).

Outline of proof: It is proved in Ref. 6 that the set of
vector fields on H forms a graded Lie left B, -module under
the bracket operation defined above. That .#’(H } is a sub-
graded Lie left B, —-module [in particular that .#'(H )is closed
under the bracket operation] can be proved exactly as in the

classical case.
Let T, (H ) be the analogue of the tangent space at the

identity e of H (i.e., T,(H ) is the set of maps X,:G “{e}—>8,
such that X, ( fg) = (X, flgle) + ( — 1)’*' //f(e)X,g.) Then
T, (H)canbeshown tobea graded left B, ~module of dimen-
sion (m,n) (cf. Ref. 6, proposition 5.9). Also ./’(H ) can be
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shown to be isomorphic (gua left B, -module) to T, (H ) ex-
actly as in the classical case.

In the case where L is finite, an (m,n)—dimensional su-
peranalytic supermanifold ¥ over B, isalsoa2*~
(m + n)—dimensional real analytic manifold, and a superan-
alytic mapping of ¥ X ¥—Y where Y'is regarded as a super-
manifold is a fortiori an analytic mapping when Y is consid-
ered merely as a manifold. Thus an (m,n)—dimensional super
Lie group over B, is also a 2“ ~ '(m + n)—dimensional real
Lie group.

The next proposition establishes a relationship between
the graded Lie module of a super Lie group H and the Lie
algebra of H regarded simply as a Lie group. It should be
noted that if Wis an (m,n)—-dimensional graded Lie left B, -
module then, (since the even and odd parts of B, are both
2"~ 'dimensional vector spaces) the even part of W can be
regarded as a 2* ~ '(m + n}-dimensional vector space, and,
as such, becomes a 2"~ '{m,n)-dimensional real Lie algebra.
A rather heavy-handed method, employing local coordi-
nates, is used in the proof of this proposition because it intro-
duces notation useful in subsequent sections.

Proposition 3.5: Let H be an (m,n)—dimensional super
Lie group over B, (where n<L < «) and let W be its graded
Lie module. Further, let h be the 2° ~ '(m + n)-dimensional
Lie algebra of H regarded as a 2“ ~ '(m + n)-dimensional
real Lie group. Then the even part of W (regarded as a
2%~ '(m + nj-dimensional Lie algebra) is isomorphic to h.

Proof: Let V be a coordinate neighborhood of H con-
taining the identity e of /, and ¥’ be an open neighborhood
of e such that V'V'CV. Let ¢,:V—B, ™" be superanalytic
coordinates on ¥ with ¢, (e) = 0 and define

K (V)XY (V)1 (V)
by

K( (hi )t (ho)): = tu(hihy)  VhheV'.
Let K', ¢, denote the ith component of K, ¥, respectively

(3.6)

for i = 1,...,m 4+ n. Finally, define
X V'i>B, ij=1..m+n
by
Xj(xli m+n) /(yK(xb m+n;y]!""ym+n”y=0 (3'7)
and
X.:G=(V')\—>G=(V") {3.8)
by

X fi= Z b/ G, (fe. D ]od.

jf=1
(For the definition of the partial derivatives G, cf. Def. 2.3.)
A straightforward adaptation of the classical proof,'° using
the chain rule for differentiation of functions of B, ™" [cf.
Ref. 6 Proposition 2.12(g)] shows that {X,|i = 1,...,m + n}
forms a basis of .2°(H ), the graded Lie module of H. Also, if
elements C % of B, (ijk = 1,...,m + n) are defined by
[X.,Xj,] = C}X,, then

i = G0 — (= D"VG,xKO0). (3.9
(The rest of the proof makes use of the notation defined in the
Appendix.)
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Define analytic coordinates ge,.— R2" 'tm+n by
&.: = 19¢,. Also, define

K:$ (V') X (V') >4 (V)
by
k(P B8 (hof): = B (hihy)  Yh hyeV'. (3.10)

Let ¢ *, x* be the (iu) components of ¢, ., respectively, and
define

Y. (V)—-R
by
p OK™(x,p)
s = 2o
v ay’v y=0

Then the set {X,, |i = 1,...,m + njueM, , } with
X,.: = x/.d;, forms a basis of h, the Lie algebra of H regard-
ed as a Lie group.
Also, if

m4n
[Xiu’ijv] = Z z B::A]VX

k=1 peM, 4
then

B, =3, x(0) — 3, x;(0).

Expanding K{x,y} and «(x,p) as power series about zero
shows that, if C§ = C%B,, where C {eR, then
B ko Ckr Fa Fp

iwjv (3. 1 1)
(cf. Appendix for notation).

But {8, X|i = 1,...m + nueM, , } is a basis of the
even part of the graded Lie module of H (regarded as a

2% ~'(m + n)-dimensional Lie algebra) and
[B,uXi’ﬂv‘X'j] = ( - I)M [V‘ﬁyﬂv [XI/Y/]
=B.8.C¥B.X,
=B B X,. n

ipju

4. EXAMPLES OF SUPER LIE GROUPS

In this section several examples of super Lie groups and
their graded Lie modules are described.

Examples 4.1: The Abelian super Lie groups.

(a) B, ™" itself, with the additive part of its vector space
structure, is an (m,7)-dimensional Abelian super Lie group
with Abelian graded Lie module.

(b) As in the case of Lie groups, factorization by appro-
priate discrete subgroups gives super Lie groups homeomor-
phicto R?" '+ ks (S )X, [for 0<k<2 £~ (m + n)}iso-
morphic qua Lie groups to R?" " +m ~¥g (U (1)), (The
existence of such super Lie groups follows from theorem
5.5.)

Example 4.2: Two non-Ableian super Lie groups with
the same graded Lie module, but topologically distinct in the
odd as well as the even sector. (Cf. Appendix for definition of
the B, .)

(a) H=B,""
fined by

(@,b)o(c,d): = (a+c+18,6,bdb+d).

Topologically, H is homeomorphic to R.® The graded Lie

= B, oXB,,;, with group operation de-

Alice Rogers 941



module of H is {X,X,} with X, even, X, odd and

XXl = (X, x,]1=0. [X5.X5] =BBX,.
It should be noted that this graded Lie module cannot be
expressed as the tensor product of B, with a graded Lie
algebra.

(b) Let K: = H /D where D is the discrete, central sub-
group of H consisting of elements of the form

( S miB, B+ nPBy + n" B BB,
e, 0
+ n(”4)ﬂtﬂxﬂ4 + ”“24)/31/3’2/34 + n'PB.BB, )

where the m”, n” are integers. K is then a super Lie group
with the same graded Lie module but now homeomorphic to
(S xR
Example 4.3: The supersymmetry group.’ This is B, **
with group operation defined by

(K40 o Y€)= (¢ + p"' — 4iByee” + 0°)
{with the notation of Ref. (4)] and graded Lie module B, © g
where g is the {4,4)—dimensional graded Lie aigrebra of
supersymmetry.

Example 4.4: The graded extension of the Poincaré
group. This is the semi-direct product of a Lie group (the
Lorentz group) with a super Lie group (the supersymmetry
group) where, given I',4 in the Lorentz group and
{x*,0%), ("€ in the supersymmetry group,

(A8 TN 15€%)
s = (ALX,6 %)o(a( I )p,b (I )e%), (4.1)

where a and b are the standard vector and spinor representa-
tions of the Lorentz group.

5. THE SUPER LIE GROUPS WHICH CORRESPOND TO A
GIVEN GRADED LIE MODULE

It was proved in Sec. 3 that the set of left invariant
vector fields on a super Lie group form a graded Lie module.
In this section the converse problem is considered and it is
proved (Theorem 5.5) that, given an arbitrary (m,n}-dimen-
sional graded Lie left B, —-module W (with L finitej, there
always exists a super Lie group whose graded Lie module is
Wi in fact, it is established that any real Lie group with Lie
algebra equal to the even part of W (regarded as a Lie alge-
bra) can be given the structure of a super Lie group with
graded Lie module W. Combining this with Proposition 3.5
shows that the set of super Lie groups with graded Lie mod-
ule W exactly coincides with the set of Lie groups with Lie
algebra equal to the even part of W. Thus the problem of
classifying all super Lie groups over a finite-dimensional
Grassmann algebra B, is reduced to that of classifying all
graded Lie left B, -modules; it seems likely that a suitable
limiting process would extend this result to super Lie groups
over the infinite~dimensional algebra B _ .

The first step in proving the main theorem is to develop
a criterion by which it may be determined whether or not a
given analytic function of g2° '= + = is a superanalytic
function of B, ™",

Lemma 5.1: Suppose f:U—B; is analytic on some
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neighborhood Uof0inR?>* " ' " . Then, with the notation
defined in the Appendix, for:t ~'(U }—B, is superanalytic on
¢ ~'(U}if and only if there exist, for each sequence of integers
Pirpi)in N, elementsf,  of B, such that

P, Opo, SOV =By By frpos (5.1)
where each o;, i = 1,...,k is an arbitrary element of M,_, .

Indication of proof: This Lemma is easily proved by
considering the series expansion of fabout zero.

Corollary 5.2:
Sorip =G, SO 5.2)

The next Lemma shows how, given a Lie group with Lie
algebra equal to the even part of a graded Lie module, the
local analytic structure of this Lie group may be used to
construct a local superanalytic structure.

Lemma 5.3: Let Wbe an (/m,n)—dimensional graded Lie
left B, module (where n<L < ) and {X,|i = 1,...m + n}
be a basis of W (with X, even for i = 1,...,m and X; odd for
i=m+1,..m+ n). Alsolet h be the 2~ '(m + n)-di-
mensional real Lie algebra derived from the even part of W,
(then h has a basis

,Xiu ]'Xi/t: :B,U,XI" l: 1""’m + n, ;uEML.]i })

Suppose that H is a Lie group with Lie algebra h, and that
¢.:V— R>" " ©nl arecanonical coordinates (with respect

to the basis X, of h) on some neighborhood ¥ of the identity
eof H. Let Ubea neighborhood of e such that YU C Vand let
k:¢. (U)X, (U}, (V) be the analytic function defined by

(@, 8sd.(h)): = ¢.(gh) Vghel, (5.3)

[with (i) component denoted « *].
Also let ¢, :V—B " with

Yo=1""oo, (5.4)
Then, if K:, (u) X ¢, (u)—1,(V ) is defined by
Kixp= S «“x))p,, (5.5)

(a) K{¥.(g); ¥.1h )) = ¥.(gh) for all g, in U;

(b) K is superanalytic on ¢, (U)X ¢,{U),
(i-e., group operations expressed in terms of the chart (V,¢, )
are superanalytic).
Further, if y:¢, (U}—B,. is defined by

X}(X): = Gj(yl K'(X;V)|y~ 0
and Cf;(x) {ij,k = 1,.,m + n) are elements of B, such that
[X..X,] = C}X,, then G, y}(0) = iC*%.

Outline of proof:

(a) This result follows immediately from Egs. (5.3), (5.4),
and (5.5).

{b] Let

ij=1,..m+n, (5.6)

" Ox*(x.p)
H(x): = —— | 5.7
Xj ayl" Y= 0 ( )

where x,yeé, (V).

Then, using induction and Lie’s first theorem, it may be
proved that
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It (x,p) _
. L

aB,-B
T(k Sl"'SA’.F:l'"Tkﬁk"'BI

TEM, |

Xt (T (D)o () (5.8)

forall(p,,...pi)in N, , ,and o, in M, |, (i = 1,...,k ) (with
the T'(k );"’, ‘,j;‘: * somewhat involved combinations of the ele-
ments C {7 in R such that C§ = C 58, ). Now let

o X= Y _—cZK“(x,yln
My O TGy Dy 20
MM,
XANA LA B (5.9)
Then it can be proved [using Eqgs. (5.8}, (A2), and (A3)] that
JK'(x,0)

=B, By Kp,.p, %), (5.10)

ayﬂo‘_"aypk‘h
and thus, by Lemma 5.1, K is superanalytic in y. Similarly it
can be shown that K is superanalytic in x.

{c) By Corollary 5.2 and Eq. (5.9)

X5(x) = Yl 7B, .
Hence
akpX,':(O) = akpX;‘:(O)A Zaﬁa
= %Bp iq‘ 4
[using Egs. (3.11}, (A2), and (A3)], and thus, again by Corol-
lary 5.2,

Guxj@ =JCl, - n

Itis next shown, in Lemma 5.4, that a topological group
with a local superanalytic structure on a neighborhood of the
identity can be given a (unique) global superanalytic struc-
ture making it into a super Lie group.

Lemma 5.4: Let G be a topological group and suppose
there is a neighborhood V of the identity e of G on which is
defined a homeomorphism ¢,:V—B; ™" of V onto an open
subset of B, ™". Then, if the product in G is superanalytic
when expressed in terms of this chart, G can be defined in
just one way as a super Lie group such that the given chart,
when restricted to a suitable nucleus, belongs to the superan-
alytic structure of G. The topology on G (qua super Lie
group) then coincides with the given topology on G.

Outline of proof: Let W,, W,, be neighborhoods of ¢
such that W, W,C Vand W,W ;' C W,. Then the global su-
peranalytic structure on G may be defined by the set of charts

{(V,.¥,)|geG} where V,:=W,g
and

Y (kg): =y (k) VkeW,.

{The proof that this set of charts does give G the structure of a
super Lie group is a straightforward generalization of the
classical proof.'®)

(5.11)

|

Theorem 5.5: Let W be an (m,n)}—-dimensional graded

Lie left B, module, and let h be the 2* ~ }{m + n)—dimen-
sional real Lie algebra derived from the even part of W. Let
H be any 2¢ ~ '(m + n)-dimensional real Lie group with Lie
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algebra h. Then H can be given the structure of an (m,n)-
dimensional super Lie group over B, with graded Lie mod-
ule W.

Proof: Lemmas 5.3 and 5.4 together imply that H can be
given the structure of a super Lie group. Also, with the nota-
tion of Lemma 5.3, if X;: = y/(x)G; i = 1,...,m + n, then
{X;li=1,..,m + n} is abasis of the graded Lie module of H
(cf proposition 3.5). Hence if

[Xi’Xj] = Dsz ’
then

D} = Gx}(0) — (= DGy (©)
~ k.

Thus the graded Lie module of H is equal to W.
a

6. SUPER LIE GROUPS AND GRADED LIE GROUPS

A definition of graded manifold and graded Lie group
has been given by Kostant.® In a previous paper® it has been
shown how the set of (m,n)-dimensional graded manifolds
can be identified with a subset of the set of (m,n)}-dimension-
al G ~ supermanifolds over B, (for any finite L not less than
n) in a very precise and natural way. In this section it is
shown that, where a graded manifold (G,4 ) is a graded Lie
group, with graded Lie algebra g, the associated supermani-
fold over B, can be given the structure of a super Lie group,
with graded Lie module B, ® g.

This result is achieved in three stages:

I. The supermanifold X (G,4 ) associated with the grad-
ed Lie group (G,4 ) is constructed according to the method of
Ref. 6.

I1. A super Lie group H over B, , with graded Lie mod-
ule B, ®g, is constructed.

II1. H and X (G,A ) areshown to be super diffeomorphic,
so that X (G,4 ) becomes a super Lie group with graded Lie
module B, ¢g.

Full details of Kostant’s definition of graded Lie group
may be found in Ref. 8. The following properties of graded
Lie groups will be required here:

(a) If (G,4 ) is an (m,n)~dimensional graded Lie group,
then G is an m-dimensional Lie group and 4 is a sheaf of
graded algebras over G with 4 (U)~C *(U)® B, forall U
open in G.

(b) Associated with (G,4 ) is an (/m,n)-dimensional
graded Lie algebra g = g, @ g,, with g, (the even part of g)
equal to the Lie algebra of G.

(c) There exists a smooth representation

7:G—(autg), such that 7|; =Ad,, 6.1)

where G, is the identity component of G and Ad, is the
exponentiation of
ad,:g,—endg
(6.2)
ad, X)(Z):=[X,Z] VXeg, Zeg.
Throughout the remainder of this section, (G,4 ) is an
arbitrary (mn,n)~dimensional graded Lie group with graded

Lie algebra g = g, @ g,, and L is a finite integer not less than
n.
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I. An atlas can be defined on G as follows: Let V, U, U,
be connected coordinate neighborhoods of the identity e of G
such that UUCVand U, U [ 'CU. Let ¢,:U,—R"™ be an
analytic chart on U,, canonical with respect to a basis
{X: i = 1,...,m} of g,. Define

U:=Ug VgeG
and

¢,:U,—R",

(6.3)

8, (xg): = 4.() VxeU,.
then {(U,,¢,)} forms an atlas on G compatible with the Lie
group structure on G.'°

Now let € be the augmentation map which projects ele-
ments of B, ™" onto their non-nilpotent parts, i.e.,

€:B,"">R",
1 m 1 .
e( z a, B, 2 a;B,,b ,...,b").
neM, ueM,

= (@}, ndy)

(6.4)
Also, given U open in R” and fa C * function of U into R,
define the G = function
Z(f)e "(Uy>B,
by
Z(fNa's..a™ "
L 1 o
= > 10195 f)lela))

i, =0..4,, =0 i,!"'lm!
xa' — €ela")1)(a™ — el@™)1)". (6.5)
Then the supermanifold K (G,4 ) constructed from the
graded Lie group (G,4 ) by the method of Ref. 6 may be most
simply characterised as an (m,n}~dimensional supermani-
fold Y over B, which possesses a chart {(V,,1,)|geG } such
that ¢,(V,) = €~ '(4,(U,)) and the functions

Vot 1 W (V NV )=, (V0 V)
satisfy

YoUy ' =Z(@0s ")  i=l..m
;/Ji,oz/;g,* l(al,_.,,am )= a i=m4+1,...m+n (6.6)
Vg, g'eG.

Moreover, any supermanifold with such an atlas will be
super diffeomorphic to K (G,4).

II. Let h be the 2“ ~ '(m + n)-dimensional real Lie alge-
bra derived from B, @ g. Then

h=g,on 6.7)
where g, is the Lie algebra of G and n is a solvable ideal in h.
Let N be the simply-connected Lie group with Lie algebran;
then N is homeomorphic to R ™"+ " ~ ™ and exp:n—N is
an analytic diffeomorphism.’' Now the smooth representa-
tion 7:G—(autg), which exists by virtue of the graded Lie
group structure of (G,4 ), (c.f. Eq. 6.1), can be used to define a
smooth representation a:G—auth, as follows: Define

7':G—auth
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by
m'(g)(ax): = am(gl(X) VaeB,, Xeg.,, . (6.8)
then 7'(g)(n) = (n) and hence 7" :G—autn can be defined by

7" (g(Y)=m(g)Y, VYen. 6.9)
Finally a:G—autX is defined by
a@)expY): = exp(7"(@)Y)) VgeG, Yen. (6.10)

Define H to be the semi-direct product of G and N with
respect to the representation a, i.e., H = G X N with group
operation

(g )@gxny): = (glgz,nla(gl)(nz))«

Proposition 6.1 (a) H is a 2" ~'(m + n)- dimensional
Lie group with Lie algebra h. (b) H is an (m,n)-dimensional
super Lie group with graded Lie module B, ® g.

Indication of proof: (a) is established using the atlas
{(U, XN, ¢, Xn)|geG } on Hwhere {(U,,8,)} istheatlas on
G defined by equations (6.3) and 7 is a global analytic coordi-
nate map on . (h emerges as the Lie algebra of H because
g = Ad,.) (b) follows directly from (a) by Theorem 5.5.

111. Proposition 6.2: H is superdiffeomorphic to K (G,4 ).
That is, there exists a homeomorphism y:H-—K (G,4 ) such
that both ¥ and ¥ ' are superanalytic).

Outline of proof: Recall that ¢, is a coordinate map on a
neighborhood U, of the identity e of G, canonical with re-
spect to the basis { X ,...,.X,, { ofg,. Let { X, , ,,...,.X,, . .| be
a basis of g, so that (with the notation of the Appendix), {5,
®X|i=1,...m+nueM,, . u#4 ] is abasis of n. Sup-
pose 7:N + R?" """+ "~ are canonical coordinates with
respect to this basis; then the analytic chart (U, X N, ¢, X 7)
on the neighborhood U, X N of the identity of H can be used
to construct a superanalytic chart (U, X N, ¥,) by the method
of Lemma 5.3. Let

Vei=U,XN

(6.11)

and
YV, —B 7"
with
¥, (xg, p)) = ¥, ((x, p)g,e)): = ¥.((x, p)),

where e’ denotes the identity element of N. Then the atlas

{ V,.¥,)|geG } defines the (unique) superanalytic structure
on H with respect to which H is a super Lie group. Also

¥ (V,) = € (@, (U,)) and it can be proved that, for all g, g’ in
G, ¥, o9, ¢, ! satisfies the conditions (6.6). Hence, K (G, }is
superdiffeomorphic to H. |

(6.12)

7. CONCLUSION

A mathematically rigorous definition of super Lie
group has been given, and several results analogous to those
of conventional Lie group theory proved. The problem of
classifying super Lie groups over finite-dimensional Grass-
mann algebras has been reduced to the problem of classify-
ing graded Lie modules. Equipped with a precise global defi-
nition of a super Lie group, it should be possible to
investigate the physical consequences of their global
topology.
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APPENDIX: NOTATION
A. Sequences of integers

If p is a positive integer, N, denotes the set of finite
sequences of integers (1y,...,n, ) with 1<n, <p for i = 1,...,k;
M, denotes the set of sequences of integers p = (,... 1)
with 1<u, <, < - <, <p; 2 denotes the empty sequence
inM,; M,,(M,,) is the subset of M, made up of sequences
containing an even (odd) number of elements.

B. Basis of the Grassmann algebra

{B, |ueM, } isabasis of B, (the Grassman algebra over
R*) with B, = 1 (the unit of B,)

B, =18, By Buy o= Upoty) in M;
and

BBy = —BpBe for 1<i, j<L.

C. Grading

The degree of an element v of a graded vector space,
algebra, module etc. is denoted |v|, with |v| = O or 1 accord-
ing as to whether v is even or odd.

When considering (/n,n)-dimensional supermanifolds,
Lie algebras etc:, this grading is put on the set
{1,...m +n}:|i| =0if 1<i<mand |i| = 1 if
m+1<i<m + n.

A grading is put on M, by

lu| =k if peM,, (k=0 or 1).

L( S x"B,,..., Z x"B,, > xmHIEG ., z xmrneg,

neM, o HeM; o HEM, 4
1 1{1,2
P= (x4 0h

HeM, ,

Components of elements of R " + " will be labelled
(dea)s
and thus, given xeR?" m+m,

i=1,.,m+n, ,UEML,mr

L“'(x)=( S X By > X™B,, S XTTHB,,.
HeM,; o

HeM, o HEM

'Many references, e.g. P. Fayet and S. Ferrara, “Supersymmetry,” Phys.
Rep. 32 C, 249 (1977).

’D, Z. Freedman, P. van Niewenhuizen, and S. Ferrara, Phys. Rev. D 13,
3214 (1976); S. Deser and B. Zumino, Phys. Lett. 62 B, 335 (1976); and
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*D. Fairlie, Phys. Lett. B 82, 97 (1979); Y. Ne’eman and J. Thierry-Mieg,
Tel Aviv University preprint.

“’Abdus Salam and J. Strathdee, Nucl. Phys. B 76, 477 (1974).
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Conf. Tubingen, 1977, edited by P. Kramer and A. Rieckers, Springer-
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D. Summation convention

Repeated latin indices are summed over {1,...,m + n}
and repeated greek indices are summed over M, unless oth-
erwise indicated.
E. Grassmann algebra combination coefficients

Real numbers F;, ., are defined (for o,,...,0, €M, ) by

Ba. "'Ba,( = Fg. ~--¢7,(Ba . (Al)
Since multiplication in B, is associative,
Fu Fi,=F},, =F,Ff,. (A2)

Let n(o) denote the number of sequences in M; which con-
tain o as a subsequence, and define 4 };” (for v,o,u in M, ) by

ar=>L itpp —p,

n(o)
vo -1 .
S if 8,8, = —B,
A4,7°=0 otherwise.

Then

AVFE =87 (A3)

F. Homeomorphism of 57" and RZ '™+
v:B PR m )

with

)

.
,...,xm,xz("2'...,x"'n,x'"“’2'...,x’" + l(l),x(m + 1(2)"",xm + 2(l),xm 22 m+ n(l)’xm + n(2).").

5 xmﬂ;‘ﬁ#)'

peM, 4
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Math. Phys.

"F. A. Berezin and G. 1. Kac, Math. USSR Sb. Vol. 11, (1970), p. 311.
®B. Kostant, “Graded Manifolds, graded Lie theory and prequantization,”
in Differential Geometric Methods in Mathematical Physics, Proceedings
of the Symposium held at Bonn July 1975, Lecture Notes in Mathematics
570, (Springer, New York, 1977).

%S. Bochner, Ann. Math. 47, 192 (1946).

'P. M. Cohn, Lie Groups (Cambridge U. P., Cambridge, England, 1957).
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English translation (Gordon and Breach, New York, 1966).

Alice Rogers 945



The Lorentz group in the oscillator realization. Ill. The group SO(3,1)
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Employing the boson operators of Barut and Bshm, we study the oscillator realization of the Lie
algebra of the Lorentz group SO(3,1} in the coordinate representation. The construction yields a
direct sum of the principal series of representations ( ji,,0) belonging to the integral or half-integral
class. The decomposition of the representation space into the eigenspaces L 2 . of irreducible

representations leads to a two-variable second order realization of the SO(3,1) algebra acting on
£, peLjZ( »- The construction is shown to be highly symmetric. While the elements of the SO(2,1)
subalgebra are invariant under the pseudorotation group SO(2,2), those of the full SO(3,1) algebra
are invariant under the SO(2) X SO(1,1) subgroup of SO(2,2). We use this intrinsic symmetry in the
construction to identify the generalized SO(2,1)CSO(3,1) eigenbases with the SO(2,2) harmonics

in an SO(2) X SO(1,1) basis, and thereby achieve a significant unification among results which

would normally appear disconnected.

PACS numbers: 02.20.Sv, 02.20.Rt

1. INTRODUCTION

In practical applications of the unitary representations
of noncompact groups many authors'-® have utilized the
technique of constructing the generators of the group out of
a set of harmonic oscillator creation and annihilation opera-
tors satisfying the standard commutation relation [a;, a] ]

= &,. Holman and Biedenharn' proposed a construction of
this type for the generators of the three-dimensional Lorentz
group SO(2,1). This, however, led only to the discrete class
of unitary irreducible representations (UIR’s) of the group.
A very general construction of this type was given by Barut
and Bohm,” who proposed an oscillator (or boson) realiza-
tion for the Lie algebra of the conformal group SO(4,2). The
oscillator realization of the conformal algebra and of its var-
ious subalgebras have been making their appearance for
some time in the past in several investigations, some of a
physical and some of a mathematical nature. On the physical
side this construction has proved to be an important techni-
cal expedient in the recent formulation of the quantum the-
ory of composite objects’® using the SO(4,2) fields in which
the Lie algebra of SO(4,2) serve the purpose of defining spin
and other quantum numbers. On the mathematical side
these investigations, which mostly deal with the simplest
SO(2,1) subalgebras of SO(4,2), were partly motivated by
their applicability in three related areas:

(1) The noncompact subgroups in this construction ap-
pear in especially symmetric forms. This has resulted in ap-
plication to the explicit construction of noncompact bases
leading to the evaluation of matrix elements of operators,
Clebsch—Gordan coeflicients, etc., of SO(2,1) in continuous
noncompact bases.*>*

(2) In contrast to the canonical Gel’fand'’~Bargmann'
realizations, this generally leads to a second order operator
realization of the Lie algebra which on exponentiation yields
a parametrized continuum of integral transforms. This para-
metrized continuum, which for SO(2,1) includes, as special
cases, Fourier, Hankel, Laplace, Gauss—~Weierstrass, Barg-
mann,'? and Barut~Girardello'? transforms, has achieved a
significant unification in the theory of integral transforms.™*
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(3) This has given better understanding of dynamical
groups for quantum systems and partial differential
equations.’*

The various investigations belonging to these categories
have nontrivial connections with the recent observations on
the role of canonical transformations in quantum mechanics
and can be regarded as natural consequences of an explicit
realization of the SO(2,1) oscillator operators in the coordi-
nate representation. These aspects of the boson realizations
of SO(2,1) have been quite extensively treated by Mo-
shinsky,®> Wolf,* Mukunda,® and co-workers amongst oth-
ers.® As a consequence of these investigations many impor-
tant results have been established and the theory has reached
a satisfactory stage.

None of these investigations,”* however, attempts to go
beyond the three dimensional Lorentz group SO(2,1). The
object of the present paper, the third of a series,” is to offer a
parallel analysis for all UIR’s of SO(3,1) belonging to the
principal series and to study some typical problems, as clas-
sified above, associated with the resulting realization of the
SO(3,1) algebra.

A major step towards the stated objective is taken by an
explicit transcription of the Barut-Bohm SO(3,1) oscillator
operators in the coordinate representation. The choice of the
representation space, which is intrinsically different from
the one considered recently by Barut and co-workers,” was
motivated by the fact that the construction possesses a high-
er symmetry,'* which manifests itself in this realization. Asa
consequence of this difference in choice, the SO(3,1) gener-
ators J, F as well as J,, F, are realized as second order differ-
ential operators acting on L *(R,), in contrast to Ref. 7, in
which the compact generators J of SO(3) are operators of
first order while all the Lorentz boosts F are those of second
order.

The generators J, F of the group, in this realization,
turn out to be invariant under SO(2) X SO(1,1). Hence SO(2)
and SO(1,1) are, of course, external symmetry groups acting
on L *>(R,) and are not the subgroups generated by J, F. The
SO(2)-generator X, having a discrete spectrum j,( j, = O,
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+1, + 1...), and the SO(1,1)-generator Y, having a continu-
ous spectrum p { — o <p < + <o), are simply related to the
Casimir operators of SO(3,1). Every one-dimensional repre-
sentation ( j,0) of the “representation generating group”
SO(2)x SO(1,1), therefore, yields a UIR of the principal se-
ries of SO(3,1). The generators F,, F,, and J, which consti-
tute the SO(2,1) subalgebra have an even larger symmetry—
these are invariant under the four-dimensional pseudorota-
tion group SO(2,2) =SU™ (1,1)x SU? (1,1} (local isomor-
phism).** The representations of SO(2,2) on L %(R,) are, how-
ever, precisely those carried by the SO{2,2) harmonics, and
the Casimir invariant of the SO(2,1} subgroup turns out, as
expected, to be a simple function of the only nonvanishing
Casimir operator of SO(2,2) [Eq. (4.4)]. Thus the problem of
construction of the SO(2,1) basis reduces to that of the
“spherical harmonics”’ for the “spectrum generating group”
SO(2,2). However, since the representation generating
group, i.e., the symmetry group of the elements of the
SO(3,1) algebra, is SO(2) X SO(1,1), a complete orthonormal
set of SO(2,2) harmonics in the SO(2) X SO(1,1) basis consti-
tute the eigenbases for the reduction SO(3,1)2>S0(2,1). This
aspect of the problem of SO(3,1) in the oscillator realization
closely resembles the Clebsch~Gordan {CG) problem of
SO(2,1),"® in which the structure of the CG series for D ;-
X D ¢ is fully determined by the properties of SO{2,2) har-
monics in the SO(2) X SO(2) basis.® Our construction, there-
fore, achieves a significant unification among results which
might otherwise appear disjointed and explains why the CG
series of SO(2,1) and the SO(2,1) content of SO(3, 1) share the
same formal structure.

We now briefly outline the contents of the various sec-
tions of the present paper. In Sec. 2 we rewrite the oscillator
realization of the Lie algebra of SO(3,1)? in the coordinate
representation and introduce the symmetry groups, namely,
the representation generating group SO(2) X SO(1,1), which
is the symmetry group of the SO(3,1) algebra, and the spec-
trum generating group SO(2,2), which is the symmetry
group of the SO(2,1) subalgebra. Section 3 deals with an
appropriate parametrization of R, and yields a two—variable
second order realization of the SO(3,1) algebra acting on
L3 (R,) + L3(R,). In Sec. 4 we deal with the problem of
explicit construction of a complete orthonormal set of
SO(2,2) harmonics in the SO(2) X SO(1,1) basis and identify
them as the generalized eigenbases for the reduction
SO(3,1)DS0(2,1).

2. OSCILLATOR REALIZATION OF THE SO(3,1)
ALGEBRA AND THE SYMMETRY GROUPS

The Lie algebra of SO(3,1) is six-dimensional and is
spanned by the elements J;, F,(; = 1,2,3) satisfying

[JnJ_,] = - [E’F;] =i€ijk Jk»

2.1

[J‘;,F}] =lfljk Fk‘

The Lie algebra possesses two independent Casimir in-
variants C|,C,, both of the second degree in the generators

C,=J—-F, C,=JF 2.2)
In a UIR of SO(3,1) the six generators would be represented
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by Hermitian operators, and C,, C, by real numbers. The
UIR’s can be classified into two families

(8) The principal series of UIR’s (jo,p): the values of C,,
C, for this class are

Ci= — 1472 —p% Co=j,p, (2.3)

wherej, is a integer or a half-integer and p is a real number in
the interval — o <p< .

(b) The supplementary series of UIR’s (0,ic): for this
family j, = 0 and p becomes pure imaginary, p = io, where &
is a real number lying in the interval 0 < ¢ < 1. In what fol-
lows we shall consider only the principal series of UIR’s.

The self-adjoint operators J, F in the oscillator realiza-
tion are given by’

4
Jy= %(a’;a3 +ala, +ala, + dla,),

Jy= — %(a;r% - a;al + a;a4 - alaz)’
Jy= %(atal +ala, —ala, —dja,),
2.4)
_ 2 2 2 2 2 2 2
Fi= — )@’ +a} +af’ +d} —af’ —a} —af’ — a)),

T2 2 2 2 2 2 2 2
Fz“z(a;r - & +a; —a +a; — a3 +4j —ay),
Fy = Yala] +a,a; + a}d] +a,a,),

where a,, and a, are the familiar harmonic oscillator cre-
ation and annihilation operators in the coordinate
representation

dm = —‘l‘: (xm + —a—) 1
‘\/2 me

al, = — . (x 9

V" ox,

The generators satisfy the commutation relations (2.1) and

are Hermitian in L %(R,):

(f&)= f S0 d *x.

Symmetry group of the SO(2,1) subalgebra: We first
show that the generators F,, F,, and J, of the SO(2,1) sub-
group are invariant under the transformation

), m=1234. (2.5

(2.6)

x'=ax, Q2.7)
which keeps invariant the quadratic form
x*=xt +x3 —x} ~x. 2.8)

To make the symmetry of these generators explicit we intro-
duce a metric tensor g,,, such that

8=8x= —8;3= —8u=1
2.9)
d, =0d/9x*, xd=x"4,, O=4d,0"
Using Eqs. (2.4), (2.5), and (2.9), the generators F,, F,, and
J5 can now be written in the manifestly O(2,2) invariant
forms,
Fi=ix*+0), F={xd+2), J;=4ix*-0). (2.10)

For the purpose of the present paper it is sufficient to consid-
er just the component of O(2,2) containing the identity,
namely, SO(2,2). It then follows that the generators
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M,, =ix,9,

, —x,8,) 2.11)
of SO(2,2) in L *(R,) commute with the generators of the

SO(2,1) subalgebra:
([FoM, ]=[FM, 1=[/M,]=0. (2.12)

The Eq. (2.12), which can be verified by explicit calculation,
expresses the symmetry properties of the elements of the
SO(2,1) subalgebra, the corresponding symmetry group be-
ing SO(2,2).

Symmetry group of the SO(3,1) algebra: The generators
J., F;, as given by Egs. (2.4), spanning the SO(3,1) algebra,
however, admit of lesser symmetry, the corresponding sym-
metry group being the SO(2) X SO(1,1) subgroup of SO(2,2).
To obtain the transformation induced by this subgroupin R,
we shall exploit the two-to-one homomorphism of
SU™M(1,1)x SU2(1,1) onto SO(2,2), which states that for ev- -
ery #eSUY(1,1), i = 1,2, there is a transformation
aeS0(2,2), with

a=T """ xuMT, (2.13)
where T is a numerical matrix
1 -1 0 0
0 0 1 ]
T= ! (2.14)

0 0 1 —i
1 i 0 0
The generators F,, J,, and J, lying outside the SO(2, 1) subal-
gebra are, of course, not invariant under all transformations
of the form
x =T "W xu*)Tx. (2.15)
If however, we restrict ourselves to the SO(2) and SO(1,1)
subgroups of «'"> and u‘*’ so that

, B eia/Z O
x = T l[( 0 e 1(1/2)

( cosh(/2)  —isinh(y/ 2))] T
isinh(/2)  cosh(n/2) ’
then all the generators J, F given by Eq. (2.4) do remain
invariant. It now follows that the infinitesimal generators of
the transformation (2.16)

(2.16)

X_L(xl_a__ 2_8_+x3_8_
2 Ix, dx, dx,
ad
—xu o ) = M, — M) @.17)
Jx,
and
i a d d
) v . 2
2 ( ]3x4+ 4c?x, x28x3
be)
— X3 _) =M, — M), (2.18)
9x,

which generate the SO(2) subgroup of #*'” and SO(1,1) sub-
group of u‘?’, respectively, commute with all the elements J,
F of the SO(3,1) algebra:

[JI’X]:[FHX]

=[J,Y]=[F.Y]=0. 219
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Further, since X, Y generate two commuting subgroups,
[X,Y]=0. (2.20)

The Egs. (2.19) and (2.20), which can be verified by direct
calculation, imply that X, ¥ must be related to the Casimir
operators of the Lie algebra of SO(3,1). Explicit calculation
indeed shows that

C,=F—F=_14+X2-7Y,
(2.21)
C,=JF=XY.

Since X is an SO(2) generator, having a discrete spectrum
Jo=0, +1/2, + 1,.,and Yisan SO(1,1) generator, having
a continuous spectrum — o <p < o, the present construc-
tion yields a direct sum of the principal series of UIR’s of
SO(3,1). Thus, corresponding to every one-dimensional
UIR (jo,p) of the symmetry group SO(2) X SO(1,1), we have
a UIR of the principal series of SO(3,1). This Abelian sym-
metry group, therefore, plays the role of a representation
generating group of SO(3,1). The group SO(2,2), which is
the symmetry group of the SO(2,1) subalgebra, on the other
hand, generates, as shown in Sec. 4, the SO(2,1) content of
SO(3,1) via a complete set of SO(2,2) harmonics in an
SO(2) x SO(1,1) basis and is, accordingly, called the spec-
trum-generating group.

3. PARAMETRIZATION OF A, AND SECOND ORDER
REALIZATION OF THE SO(3,1) ALBEGRA

The representation D of SO(3,1) generated by J, F of
Eq. (2.4) is reducible and is a direct sum of all the UIR’s
Y (jop) belonging to the principal series of representations:

D=Fe f dp G,
Jo - w0

The first step in effecting the reduction consists of an appro-
priate parametrization of R, which is particularly suited for
the decomposition of the representation space into the eigen-
spaces L} , of X, Y. To achieve this we express the whole of
R, as the union of two domains

(3.1

R,=D'"uD®, (3.2)
where D ‘" is the “spacelike”” domain
x,eDVixt=xi +x3 —x; —x;=r, O<r<ow, (33)
and D ‘¥’ is the “timelike” domain
x,eDPx*= —r, O0<r<w. 3.4
We disregard the “light cone”
x* =0,
as this is a submanifold of lower dimensions.
In DY, n = 1,2, we introduce
yo o L(F X X l:x")eSU(l,l), (3.5)
r 3+ iXy X+ ix,
o= LT F l:x2>eSU(l,l). (3.6)
ro\X, —ix, X;-+ix,

The required parametrization of R, = D ‘"'uD *’ now follows
as a consequence of that of u®"eSU(1,1). The choice is dic-
tated by the representation generating group
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SO(2) X SO(1,2), which suggests a parametrization of «” “
of the “mixed basis” type

b (é"” 2 0 ) (cosh(v/Z) sinh(v/ 2))
““ =\o e \sinh(w/2) cosh(v/2)
cosh(17/2) i€, sinh(n/2))
(—- i€, sinh(n/2) cosh(n/2) )
€,= —€=1;, 0<a<4dr;
— o <V< o, — <<, 3.7)

Combining Egs. (3.5), (3.6), and (3.7), we obtain the ele-
ments x,, in terms of the radial and polar (or hyperbolic)
variables

x,eD "t x, = HA + B), x,=HC — D),

=HE—-F), x,= —~—nNG+H), (3.8a)
x,eD? x,=HE+F), x,=nG—H),
=HA—B), x,= —HC+D), (3.8b)
where
(;) _ (cosh(v/Z) cosh(17/2) cos(a/ 2)) ‘
sinh(v/2) sinh(n/2) sin(@/2)/’
(;) _ (sinh(v/ 2) sinh(n/2) c'os(a/ 2)) .
cosh(v/2) cosh(n/2) sin(a/2)
(E) _ ( sinh(v/2) c?sh(n/ 2) Cf)s(a/ 2)) :
F cosh(v/2) sinh(%/2) sin(a/2)
G cosh(n/2) sinh(/2) cos(a/2
(H) - (sinhEZ/ 2)) cosh((:77/ 2)) sin((a/ 2))) (39)

The relation between the derivatives in the Cartesian and
polar variables can be obtained after a laborious calculation
and is given by

d/dx,
8/9x,
9/9x,
3/dx,

A+ B —E—-F —G+H -—-C-D
| ¢-D —~G+H E+F —A+B
"\ -E+F 4-B -C-D G-H

G+ H -C—-D —A+B —E-F

Ha/dr)
2(3/0v)
2 sech(d /dn)
2 sech(d /da)
for x, eDV, (3.10)

Forx,eD" > the corresponding relation is easily obtained by
symmetry.

The Casimir operators X, Y and the Jacobian have the
same form in both D "’ and D ‘® and explicit calculation
yields

X= —id/0a), Y= —id/3mn),
d *x = \r’ coshvdvdnda. 3.1

The representation space now decomposes into two sub-
spaces and the elements g(x)eL *(R,) will, accordingly, be
represented by a pair of functions
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_ (ﬁl(r"’ﬂ]’a))
Z(r ’V,ﬂ,a) ’
which are the elementsof aspace L 2 (D ‘") + L2(D ?’). The
inner product in L *(R,) now becomes

=3, Sif[[[rar

X coshv dv dn da h F(rvn,0)8,(rvpa). (3.12)

Since X, ¥ have the same form in both D !’ and D ‘?, to dia-
gonalize X and Y, g; must be represented by the appropriate
Fourier expansions

‘Jua f dp e’PU

(-5
2 2m»—~w

'Poy r,V)
X 1 ey (3.13)
L)
The summand-integrand, namely the column vector
Do
ghagion (1170) G.14)
S50y’

is by definition the representative element of the eigenspace
2, =L{, +LY - The family of these eigenspaces evi-
dently supports the principal series of UIR’s of SO(3,1).
Since,in L} »»X and Y can be replaced by the numbers
Jolo=0 +1/2, + 1--)and p( — o <p < ), respectively,
the above construction yields the desired two-variable sec-
ond order realization of the SO(3,1) algebra acting on

. f’i‘"”(r,V))
CGoP) — .
4 (fé"”(r,v)

Acting on the column vector function (3.15), the generators
(2.4) will be represented by 2 X 2 diagonal matrices with op-
erator elements

(3.15)

J—(J(l) 0 F(]) 0
- O J(2) ’ = 0 F(z) ’ (316)
with
Jo = Smhv[%.{.,i(ii)
4 or\ r or
4cothv 3 9  Be,jp 4 ]
—_— hy — — (n) ,
y o ov + > cschy = o'
JM = €, (smhvr—a——z coshv—a—),
2 ar v
4
ol -b202)-tor).
} Par\ ar) P~ s
€, 10 J 4
s 2o2) ).
il [ EA
aJ
P L(r212),
r3r+
Fo smhv[_r2 r.‘i(_l-fi)_ic thv_a_ a
ar\r or r ar v
c i
+ —"rzi'g csch f"’] , 3.17)
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where

Q= — L (i coshv—a—)
coshv \ dv v
- —1“2— (5 —p* —2€, jp sinhv),
cosh”v
€, = —€;= 1.

4. THE REDUCTION S0(3,1)>S0(2,1) AND S0(2,2)
HARMONICS IN SO(2) X S0O(1,1) BASIS

We have already seen in Sec. 2 that the generators F,
F,, and J; of the SO(2,1) subgroup commute with the gener-
ators M, [Eq. (2.12)] of SO(2,2) acting of feL *(R,). The
representations of SO(2,2) on L *(R,), however, belong to a
very special type, namely, those for which there is only one
nonvanishing Casimir invariant

Ki=~M*"M, = —IM? “4.1)
The second operator vanishes identically
K,=¢€,,,M*"M* =0. 4.2)

This has the consequence of restricting the UIR’s of SO(2,2)
appearing in the problem to the (j, )) type. The commutation
relations (2.12), therefore, suggest that the SO(2,1) Casimir
invariant

Q50(2.1) =J§ —F% ——F% 4.3)
must be a function of K, and can now be easily verified to
essentially coincide with the nontrivial Casimir operator of
S0(2,2)

QSO(Z.]) = Kl = - §M2- 4.4

The Eqgs. (2.21), in addition, require that in a UIR of
SO(3,1), X and Y (and hence C, and C,) must be diagonal.
The eigenfunction of K, = — 1M ? will belong to a definite
UIR of SO(2,1)C SO(3,1); at the same time they will be the
basis vectors for the UIR’s of SO(2,2) in a definite form,
namely, one in which M %, X and Y are simultaneously diag-
onal. Since (X,Y) = ¥(M,, — M4, M,, — M, ) are the gener-
ators of the SO(2) X SO(1,1) subgroup, the representations
(J, /) of SO(2,2) appearing in the problem are explicitly re-
duced under SO(2) X SO(1,1). The eigenbases for the reduc-
tion SO(3,1) DSO(2,1) which are simultaneous eigenfunc-
tions of

— M MY, (M, — M), (Mo — M)
are, therefore, the SO(2,2) harmonics in SO(2) X SO(1,1)
basis.

These SO(2,2) harmonics will evidently involve the an-
gular, or hyperbolic, variables introduced in Sec. 3, leaving
the radial dependence unspecified. To completely specify the
basisin L} » we need to specify the diagonal generator of
SO(2,1)CS0O(3,1). There are three distinct possibilities; (a)
diagonalization of J; leading to the reduction SO(3,1) D~
S0(2,1) DS0O(2), (b) diagonalization of F, leading to the
reduction SO(3,1) DS0O(2,1) DSO(1,1), and (c) diagonaliza-
tion of J, + F, leading to SO(3,1) DSO(2,1)DT,.

Construction of SO(2,2) Harmonics: Having identified
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the generalized SO(2,1) eigenbases with the SO(2,2) har-
monics in SO(2) X SO(1,1) basis, we now deal with its explic-
it construction. As stated above, these are simultaneous ei-

genfunctions of
— 2 _ Q)
QSO(Z,I) - }liM - - Q vn

[ 1 a ( ) ) 1 (5 2
= —|coshy — | + — | —
coshv dv v cosh®v \dn?
2
— J —2€, 9 . —a—sinhv)] )

da? da dy
X= —id/da), Y= —i(d/3n).
These are, therefore, of the form

Yo lamv) = ehee” f0(v).
{7 is a solution of the ordinary differential equation

dfe + 1
dz 4z(1 — 2)
X(fo —p* =2ijpe, 2z — 1)) =j(j + 1) 1,

with

(4.5)

(4.6)

d
L0
dz A1 -2

“.7

z = (1 — i sinhv),
and is given by
() _ Nipe, +J)/2 Gipe,, ~ ju)/2
fiv=z (1-2)

XF(—j+ipe,.j+1+ipe,;jo + ipe, +1;2). (4.8)
To ensure the correctness of the choice of solution, we now
proceed to show that the family of solutions (4.8) for j run-
ning over all continuous nonexceptional representations

Jj= —1+is,0<5< w0, and a subset of discrete representa-
tions, 1(or 3/2)< — j< j,, constitute a complete orthogonal
setinL}, .
-
P § I
S~ |
7 Imz |
/
/ |
/ |
/ |
/ ]
/ |
/ |
|
!_______/\A B -
T C L/ L} Rez
\ |
\ |
\ !
\ I
\ 1
N |
AN
N :
S
2"~ d ]
FIG. 1. The contour Z.
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(a) Orthogonality: For definiteness, we first consider j
lying in the continuous spectrum D ¢. The norm of the func-
tion f{"eL 7, , (n = 1,2), is now given by

(O, f) = J- coshv dv f{" f{7.

On introducing z = (1 — i sinhv), the r.h.s. can be written
as a line integral along Rez = 1/2. Setting n = 1 and sup-
pressing, for notational convenience, the superscripts we
obtain

(4.9)

1/2 +ioo

o f) = —ZiJ dz

172 — i
XF(—j—ip.j+1—ipsjo—ip+1;1 —2)
XF(—1+ipd+1+ipijo+ip+12).  (4.10)

It is clear that for continuous j, f; can only be §-function
normalizable and the norm (4.10) exists essentially in the
sense of generalized function. The main results can, howev-
er, be exhibited by constructing a bilinear functional

—1/2 4 i
6= J IR 700

=( - z)(ip —Jo)/25ip +j")/2'/’(z)’ (4_1 1)

where
VO = [ XOF(~1+ il +1+pijy+ip + 1) dl

(4.12)
and y (/) is an arbitrary test function. The space of these test

Using the standard formula,'®

F@bel —z) =T [c’c

Eq. (4.15) takes the following form:

—_ _b ~
a‘z._ ]F(a,b;a+b~c+l;z)+r[c,a+b

functions is chosen such that ¥(z) is analytic in the domain
Rez<1/2 and vanishes sufficiently rapidly when |z|-— o0 for
Rez<1/2. We therefore consider

1/2 4+ ioo
f.8) = —2if dz Y(2)
1/2 —iw
XF(—j—ip,j+1—lp;jo—ip+ 11 —2).

(4.13)

Since #(2) is analytic, the only singularity of the integrand for
Rez<1/2 is the branch point of the hypergeometric function
(HGF)at 1 —z = 1, i.e., at z = 0. With the standard choice
of the cut for the HGF, the integrand is single valued and

analytic (for Rez<1/2) in the z-plane assumed cut along the
negative real axis from 0 to — oo. If we therefore choose, as
shown in Fig. 1, a closed contour 3, by Cauchy’s theorem

f1//(2)F(—j—ip,j+l~ip;j0—ip+l;1-—z)dz:O.
s
4.14)

Since ¥(z) vanishes rapidly on S, §,, we have
(:8)=2 [ v
C
XF(—j—ip,j+1—ip;jo~ip+1;1 —2)dz,
4.15)

where C stands for the part of 2 formed by the small circle s
of radius € around the origin and the branch cut from — eto

— 0.

ab C]z‘““‘”F(c—a,c~b;c—a—b+l;z), (4.16)

o~ + L —jo—ip o+ 18 [in o=+ Ljo+4 o, —
(f~,¢)=211"[ L, , sz zZ)Zo P FioiP(z 21F[ 0 *70 P]f T
’ Lo+ 1—ip | R e aur | B 2T PN | deye B, )
where
F @) = F(jo—j,jo+J+ Ljo+ ip + 1;2). “.18)

The integrand in the second term on the r.h.s. of Eq. (4.17), which is regular at z = 0, is continuous across the branch cut and
the integral, therefore, vanishes. The only contribution to the scalar product ( f;:® ), therefore, comes from the first term and

we have
do—ip+1,—jy—i

() =2ir % PR ] [xwnina,

where

1G1) = [ dezh+ v Fn) Firi)

(4.19)

(4.20)

= liin0 [ — 2i sin(j, + ip) dx (—x)*»* (1 — x) ~ Fpdo(x)F Pio(x) +- f dzzh+%®

X (1 — z)# ~F Po(z) F P inz) ).

4.21)

The integrals appearing in the r.h.s. of the above equation can be evaluated by using the differential equation satisfied by the

HGF and we have

( —_ x)ip +Jo+ 1(1 __x)ip —Jo+1

f dx (—x)+ (1 — x)'P—foI;'J{p,J},(x)FlIb.io(x) = lim

—€ x— — oo
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) dFJ{ﬂ-/‘u o dF'[ﬂvfn PLER
x| P —Fp + , (422)
dx ’ dx p+jo+1
ot g+l
fdz 27Tl — 2)7 RF P92y FPz) = 2§ sinar( i, + lp) ;—— (4.23)
Jotip+1
Combining Eqgs. (4.19) and (4. 21)—(4 23), we finally obtain
) =dsinatorip) [ 1@) ‘
@) = 4 sing(j, + ip J - . (= x)yP+i s (1 — x)ye it}
’ ’ T GTDG AT
(F"’] dF‘PJ dF"p'J“Fip,j) 494
dx dx / ' (4.24)
Evaluating the r.h.s. in the traditional way we have
o +ip+ 1, jo—ip+1, 2/ +1, —2j—1, )
(f;,f,)zsﬂlr[ CJemip T Jemip I YL s(Imy — Imi),
—J—ip,j+14+ip,—j+ip,j+1—ip,jo—jijo+i+1
for Imj, Im/> 0. (4.25)
The orthonormalized SO(2,2) harmonics in L (), | are, therefore, given by
Fip = Njj, pehein f10, (4.26)
where
N = Ll i+ i, —j+ipj+ 1 —ipjo—jjo+J+1,]] 2
Bidop i . . C . . (4.27)
2 Jotip+ 1, jo—ip+1, 2/ +1, —2j—~1

Completeness: The completeness of the orthonorma-
lized SO(2,2) harmonics is a direct consequence of that for
the SU(1,1) representation functions of Bargmann.'' The
latter have been identified by Mukunda’® as the SO(2,2) har-
monics in an SO(2) X SO(2) basis. The completeness of these
SO(2,2) harmonics, therefore, follows from the Plancherel
formula for SU(1,1), which states that every square integra-
ble function f(g) on SU(1, 1) can be expanded in terms of the
representation matrices D’ ,(g) as follows:

f(g S Zﬂ Jol f<|

Jol

(4.28)

Here S stands for the summation over the discrete and inte-
gration over the continuous j values. Bargmann’s theorem
asserts that the UIR’s not appearing in the expansion are
those of the continuous exceptional series, and the lowest
ones (D /% *) of the discrete series.

Analysis of the Plancherel formula® for functions
restricted to the eigenspace L (), carrying definite
SO(2) X SO(2) quantum numbers reveals that only the sub-
set —1/2>j> — j, of the discrete UIR’s appear in the ex-
pansion. The completeness condition can therefore be ex-
pressed as

(n)

—1/2 + i
e =~ dj ok fmD /.
— 172
+ Y UehimD, (4.29)
Joe= 1(or - 3/2)
where €, = + according as n = 1 or 2. Here, for definite-

ness, we have chosen j,/ to be positive integers or half-inte-
gers and j, < [. If j, exceeds [ then, of course, the discrete
UIR’s do not extend beyond — /. This equation yields the
CG series for the product D + xD —°

The above equation, which expresses the completeness
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!

of the SO(2,2) harmonics, is a direct consequence of the
Plancherel formula for SU(1,1), due to Bargmann.'' Al-
though the completeness property is established by examin-
ing the properties of the SO(2,2) harmonics in the maximal
compact SO(2) X SO(2) basis, it is clear that the real content
of the result is independent of the basis chosen in setting up
the representations of SO(2,2). It is, therefore, possible to
transcribe the above result to the situation wherein the
SO(2,2) harmonics are constructed in a different basis,
namely, in an SO(2) X SO(1,1) basis. Since only a change of
basis is involved, the representation functions D /, of Mu-
kunda will be a linear combination of Y{" », given by Egs.
(4.26) and (4.27):

D/ €,,0 “f dp a(](» ,P j,n)Yi"j)l, (430)

The elements f](”’eL 7.0+ in addition, can be related to £} of
Eq. (4.29) by
o = Z a(fop lin) £ (4.31)

Putting all these facts together, we can easily transcribe the
completeness condition (4.28) to read

FOE) = i f dj A Gopr MY

+ Uops MY 1),

J I(or —3/2)

In the discrete summation # = 1 will correspond to the + ve
discrete series and n = 2 to the — ve discrete series, respec-
tively. While the completeness relation expressed in the
SO(2) X SO(2) basis yields the structure of the CG series for
D * XD —, the same relation expressed in the

SO(2) X SO(1,1) basis yields the SO(2,1) content of SO(3,1).
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The radial eigenfunctions corresponding to the three
possible subgroup reductions of SO(2,1) CSO(3,1) are as fol-
lows:

(i) SO(3,1)DS0(2,1)DSO(2). In this case J; is diagonal
and the radial eigenfunctions are given, as in Ref. 9, by Whit-
taker functions

l//f::)(") =x' We,,m,j+ 172 (%),
x=r.

(i1) SO(3,1) ©DSO(2,1) OSO(1,1). For this subgroup re-
duction we choose the generator F, diagonal. The eigenfunc-
tions are

£ =2,

(1ii) SO(3,1) DSO(2,1) DO T,. In this case J, + F, is diag-
onal and the eigenfunctions are

gu(r) = 8(r — |ul).
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Partial-range completeness and existence of solutions to two-way diffusion

equations
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Separating variables to solve a two-way diffusion equation leads to a nonstandard eigenvalue
problem in one variable. It is shown that the eigenfunctions having negative eigenvalues are
complete on the part of the domain where initial conditions are imposed, while those with positive
eigenvalues are complete where final conditions are imposed. The corresponding exponentially
growing and exponentially decaying solutions may be used to expand arbitrary solutions on semi-
infinite intervals in the “time” variable. A natural iterative procedure for obtaining solutions on
finite intervals is shown to converge. In some cases a linearly growing solution must also be taken

into account.

PACS numbers: 02.30.Jr

I. INTRODUCTION

We consider the equation

d d d
h(@)—f(x,6)= —D@O)—f(x,0 1
()axf(x ) Y ()aef(x ) 0y

in the domain a, < 8 < b, and 0 < x < L, with D (@) positive
but with 4 (6) changing sign in the interval. Self-adjoint
boundary conditions (independent of x) are imposed at

0 = g, and 6 = b,,. Since & changes sign, the usual initial
conditions are replaced by initial and final conditions

f(0,0)=v.6), where h(6)>0, (2a)
f(L,B)Y=v(8), where h(8)<O0. (2b)

This equation, some physical systems that it describes,
and the relevant literature have been discussed by Fisch and
Kruskal,' so we shall be rather brief here.

The special case

. af d . .0

siné cosd o 70 sind % f 3)
for 0 < 8 <, describing the steady-state distribution of par-
ticles scattered by a slab, was derived by Bothe.? Bethe,
Rose, and Smith?® treated (3) by separation of variables, ex-
panding the solution as a sum of exponential solutions and a
single nonexponential or “diffusion solution.” Since the ei-
genvalue problem is not of classical type, however, the ques-
tion of completeness of the eigenfunctions remained open.
The author* used methods of functional analysis to prove
existence and uniqueness of solutions to (3) and to justify the
Bethe-Rose-Smith expansion.

Fisch and Kruskal' proved completeness of the eigen-
functions corresponding to the general equation (1) by an
extension of classical arguments for the Sturm-Liouville
theory, and found conditions for the existence of a diffusion
solution. The existence question for (1) was left open, but
Fisch and Kruskal pointed out that it was closely related to
the conjecture that the eigenfunctions corresponding to neg-
ative (respectively positive) eigenvalues are complete in the
region where 4 (0) is positive (respectively negative); they
also adduced numerical evidence for the conjecture.

In this paper we prove the Fisch-Kruskal conjecture
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and the existence of solutions to the general problem (1), (2).
Similar results were obtained for analogous problems in Ref.
5. However, these results are not immediately applicable to
the general equation (1). Moreover, the treatment in Ref. 5 is
rather abstract, and for the case of partial differential equa-
tions the methods are merely sketched. Therefore we give

here a full and self-contained treatment of the problem (1), (2)
by adapting some of the methods of Ref. 5. In the process we
obtain a different proof of the Fisch-Kruskal completeness
theorem, as well as different proofs of the results of Ref. 4.

The paper is organized as follows. In Sec. II we prove
completeness of the eigenfunctions associated to the prob-
lem by formulating an equivalent self-adjoint problem. Hav-
ing completeness, we derive the general form of a solution to
(1). In Sec. III we prove the partial-range completeness of
the eigenfunctions, i.e., the Fisch—Kruskal conjecture. The
conjecture is shown to be equivalent to the invertibility of a
certain operator built from projections that are self-adjoint
with respect to two distinct inner products. The proof of
invertibility involves some algebraic manipulations with
these projections in order to establish inequalities that imply
invertibility.

The partial-range completeness immediately implies
the existence of solutions to the problems corresponding to
(1), (2), but on the intervals 0 < x < 0 or — w0 <x<L.In
Sec. IV we obtain the existence of solutions on finite intervals
by reducing the problem to invertibility of still another oper-
ator constructed from projections.

These arguments are worked out in detail for the case
considered by Fisch and Kruskal, i.e., when there 1s a diffu-
sion solution. It is pointed out in Sec. II that there are two
other cases for Eq. (1). In Sec. V we indicated briefly how
these cases may be treated in essentially the same way; in fact
they are slightly simpler.

In Sec. VI we consider a natural iterative procedure for
constructing solutions on finite intervals, based on the par-
tial-range completeness result. This procedure is shown to
converge; in fact it is simply a more concrete version of the
operator-theoretic solution given in Sec. I'V.
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In Sec. VII we summarize our results for all three cases
arising in connection with Eq. (1) and the problem (1), (2).

Il. COMPLETENESS OF THE EIGENFUNCTIONS;
EXPANSION OF SOLUTIONS

We assume that D () is such that the standard Sturm-
Liouville theory applies to the operator 4,

d d
Au() = deD(é’)deu(é’), @
with the given boundary conditions. Thus there are eigen-
functions ¢, k = 0,1,2,---, and eigenvalues O <p <
such that

Ap, + @, =0, ©)

[e@w0rd0=0, . ©
Three cases should be distinguished:

>0, @)

o =0 and fh(ﬁ)d&;ﬁo, ®)

Ho=0 andfh(ﬂ)d@——-O. ®

(We assume that 4 is piecewise continuous, with a piecewise
continuous derivative.) All three cases may be treated in es-
sentially the same way. We shall concentrate on the third
case, which is slightly more complicated, and discuss the
cases (7) and (8) very briefly in Sec. V.

Separating variables in Eq. (1) leads immediately to the
following eigenvalue problem:

Auy(0) = Ach @)ur (). (10)

Note that under assumption (9) the equation Au = v has a
solution u satisfying the boundary conditions if and only if
fv(6)d6 = 0. Thus the solutions to (10) must satisfy

J.h(e)uk(ﬁ)dﬁzO (11)

if 4, #0. Assumption (9) also implies that there is a function
g satisfying the boundary conditions such that
Ag=nh. 12)

Then we must have
0= fh (6)u, (0)do = J.Ag(ﬁ)uk(ﬁ)dB

- fg(a)Auk(mde:/lk fg(e)h ©)u,(6) d6 . (13)

Because of (12) and (13), it is natural to look for solutions to
(10) in the space H that consists of functions satisfying the
boundary conditions and also the two constraints

fh(&)u(&)d@:O: fh(())g(&)u(@)d&. (14)

In this space H we define an inner product
du dv

(uv) = — fAu(&)v(@)dH: fD(B)—d?EdG. (15)

This inner product is positive definite on H. In fact, suppose
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(u,u) = 0; then, since D is positive, it follows from (15) that
u is constant. Now

o;efp(e)(%)z: — fg(ﬁ)h(@)dﬁ. (16)

Since u is constant and satisfies (14), we must have ¥ = 0.
Suppose v belongs to A. Then there is a unique solution

to the problem
ueH, Au=hv. 17)

In fact, since v is in H, it satisfies the condition for solvability
of Au = hv. Let u, be a solution. We claim that there is a
unique constant  such that ¥ = u, — a belongs to H. We
must have

0= f(uo—a)h= fuoh= Jqug= f(Auo)g

= J hvg , (18)
but this is automatic, since v is in . We must also have
O=J(u0—a)gh=fu0gh—ajgh. (19)

Because of (16), Eq. (19) has a unique solution a.

Let Sv denote the unique solution to (17). Thus S'is an
operator from H to itself. It is self-adjoint with respect to the
inner product (15):

(Sv,v,) = — J.A(Svl)vz= - fhv,vzz - fle (Sv,)
= (v1,50,) - (20)

Moreover, S is a compact operator in the space H (see Ap-
pendix). It follows that H has an orthonormal basis consist-
ing of eigenfunctions for S (see Ref. 6). Note that Su = O only
ifu(8) = Owhere £ #0. Thus we shall discard the eigenfunc-
tions corresponding to eigenvalue zero. The remaining ei-
genfunctions u, satisfy (10) with A, #£0. We shall index
them so that

Ay <0 if k>0, A, >0 if k<O. 21

We may now show that any function « that satisfies the
boundary conditions and the conditions

Ju2<oo, fD(e)(Z—Z)2<oo 2)
can be expanded uniquely, where /4 (€ )40, in a series
ul)=a+pgO)+ Y aul(), (23)

where a, 3, and the g, are constants. In fact, by what has
already been shown, we only need to show that there are
unique constants « and /3 such that # — o — Bg belong to H.
Thus we need

O=J(u~a—ﬂg)h=fuh—ﬁfgh, 249

0= f(u—a—ﬁg)h= fugh~afgh—ﬂfg2h. 25)
Since fgh 70 by (16), these equations determine a and 8

uniquely.
Suppose now that f'is a solution to (1). We may expand
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fx0)=alx) +Bx)gO) + > a,xu (), (26)
where 4 (6 )#0. From (24) we have

[J’(x):cff(x,ﬁ)h(ﬁ)d@, c = fgh, 2N
SO

aB _ . (Y, _

T —cjaxh—cJAf—O. (28)

Similarly, from (25) we get

aw) =¢ [ fx0)@ I ©)d0 -5 [ .
Therefore
da i _ . B o
I —CJ Em gh—cJAfg—cijg—cffh—B.(w)
Finally,

() = (f—a — Beuy) = f(f— a — Bo)u,

= A, f(f-—a — Bg)hu, = 4, ffhuk, (30)
since u, satisfies (14). Therefore
‘2"; Y ‘f%hu& Y J(Af)u,‘, =4, JfAuk
=12 ffhuk =A.a .
We have shown
fx8)=a+blx+g0)+ Y aeu ), 31

where / (8 )=£0. Since the sum on the right gives a solution to
(1) that coincides with f wherever 4 (6 )50, and since the
solution to (1), (2) is unique (see Ref. 1), it follows that (31),
is true for all x and 8, a,<x<b,, 0<O<L.

ill. PARTIAL-RANGE COMPLETENESS: THE FISCH-
KRUSKAL CONJECTURE

In this section we show that (together with g and a con-
stant function) the eigenfunctions u, with4, <0(respective-
ly, A, > 0) are complete in the region where 4 (6 ) > O (respec-
tively, /2 {6) <0). To do this it is convenient to normalize the

u, differently: let
ve = | A", . (32)

Thus

thjuk

= A [ =140,

= - V‘;Il/zuk\l/u;_l(u;:“k> = — Sgn(ﬂ';‘)éjk . (33)
It is also convenient to introduce two new inner products in
the space H above:

(w0, = 3 (wv ) (Vo) (34)
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(), = f 1 (6)]u(@)(B) db . (35)

Thus {(u,v), corresponds to taking the v, asan orthonormal
basis in H, while (u,0), is the L * inner product with respect
to the measure i (6 )|d8. It is true that the norms associated
with these inner products are equivalent: for some constant
C,

C ! (“xu>l<<u’u>2<c <Z«i,ll)x -

However, we shall not need this fact.
We now introduce four projection operators in H. Set

(36)

PJ[(&) = Z <U,Uk )U,\(G) ’ 37
Pu(@)= 3 (uu,)vi(0). (38)

These are self-adjoint complementary projections with re-
spect to the inner product (u,v) :

(P, upv), = (u,P v),, 39
Pu+Pu=u, (40)
P(Puy=Pu, P(Pu)=Pu. 41
Next, set
Qu@)=u(@), if h(0)>0,
42)
QuB)=0, if h(6)<0,
Qu@)=u(@), if h(6)<0,
(43)
Qu@)=0, if h{(0)>0.
Then
(Ql u’v>2 = (u’Qi U>2 s (44)
Qu-+Qu=u, (45)
Q(Qu)=Qu, Q(Qu)=Qu. (46)

The following is a basic interrelationship between these four
projections and the two inner products:

(Q+u - Q_JJ,U)Z
_ Jh(B u(0)0(6) d6

= (u,v;) .0 ) fh(ﬁ Ju,(6 v, (6} 6
=Y (up;) (v, ysgn()8 = (u,P v —P v}, . (47)

Since Q . and P, are projections, (47) implies the four ba-
sic identities

(Qu,Pu), = {Qu,Pv),, (48)
(Qu,Pv), =(Qu,Pv),, (49)
(Qu,Pvy, = — (Qu,Pv),, (50)
(Qu,Pv), = — (Qu,Pw),. (51)

The partial-range completeness conjecture may be for-
muiated in the following way: if v is in A, then there are
unique functions u, and »_ in H such that

Pu.,=u, and u(0)=v(0), where £(0)>0, (52a)
Pu =u and u(0)=uv(6), where h(8)<0 . (52b)
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In fact, the condition P.u, = u, is precisely the condition that
the expansion of . contains only eigenfunctions with A, <0,
and similarly for the condition P.u_ = u.. Setting
u = u, + u_, we may reformulate (52a) and (52b) as the sin-
gle equation

Viu=(Q.P.+QPu=uv. (53)
Our precise statement is that if v belongs to H,, the comple-
tion of H with respect to the inner product (35), Eq. (53) has
a unique solution « that belongs to /,, completion of H with
respect to the inner product (34). Note that H, consists pre-
cisely of functions v such that

f[h(&)[v(0)2d9< 0, thz fghv:O. (54)

In proving existence and uniqueness of solutions to (53), it is
convenient to introduce three more operators:

uﬂ 21421{ +"£L1%’ pa =:1h§l»+'}{£ly
W,=PQ +PQ.. (55)
Using the properties (39)—(41), (44)-(46), and (48)—(51), one
obtains identities
Vi, V), = () + {Wu,Wu),, (56)
(Vou,Vouy, = (u,u), + (Wou,Wou),.. D
For example,
(Q‘*P*u’Q*PJ‘)Z = (QQ.PJJ,P‘U)Z = (Q,P,u,Pm),
= ( Pu,Puy, — {Q-Pu,Pu),
= < P;u,P¢u>1 + (Q-P;u,PJ‘)z
= (Pu,Pu), + (QPu,QPu),. (58)
Interchanging + and — in(58) and adding the new identi-
ty to (58) gives (56), and (57) is exactly analogous.
Note that (56) implies u = 0if V,u = 0, so a solution of
(53) is unique. It is also an easy consequence of (56) that
V(H,) is a closed subspace of the Hilbert space H,. There-
fore, to show that (53) has a solution for every veH,, it is
enough to show that any element of H, orthogonal to all
elements ¥,u must vanish. But (48) and (50) imply that
(v, V\u), = (Vw,u),. In particular, {v,V,V,v),
= (V,v,V,v),. By (57), therefore, if v is orthogonal to all
V,u, it follows that v = 0. This shows that (53) has a solution
u for each veH,.

Another way of expressing the result is this. Suppose
only that

f]h @)v(6)Y do< .

There are unique constants 3 such that

(59

f(v—a*ﬁg)h=0= f(v«a—ﬂg)gh. (60)

Then v — a — Bg belongs to H,, so it may be expanded as
above. Thus

v(@)=a + Pg@) + z a,v,(6), where h(6)>0, (61)

k>0
and

@) =a+pAg0)+ Y a,v,(0), where h(6)<0. (62)

k<O
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Note that since the functions v, are constant multiples of the
functions %, , we may change the constants a, and replace v,
by u, in (61) and (62).

For later use we note here some other consequences of
the identities (48)—(51), relating the operators ¥, and ¥, and
the operators W, and W,:

Vuw), = (u, Vo), (Wiuw),= — (4, W), .

Thus if we consider ¥, and W, as operators from H, to H,, it
follows that the adjoint operators are ¥, and — W,, respec-
tively. Therefore the adjoint of ¥~ W), considered as an
operator in H,,is — W, V;~!. Note finally that if we re-
place u in the identity (57) by ¥, 'u, we obtain the
inequality

(WszvluaW2V2_IU)1<(U,u): . 63)

IV. EXISTENCE OF SOLUTIONS

Consider first the problem on a semi-infinite interval:

s _9 pey L o
hﬁ—&ﬁ’ D) 30’ O<x< o, (64)
f(©0,8)=uv(6), where h(0)>0, (64a)
f(x,6)—>0 as x—, where 2A(6)<0. (64b)

The second condition indicates that the expansion (31)
should have only terms for which A, is negative. By modify-
ing the function v, where 4 (8)<0, we may assume that
Svh = 0 = fugh. Then, by the results of the last section,

v(@)= Y a.u (@), where h(6)>0. (65)
A>0
Thus with this (unique) choice of the a, , the solution to (64)
is

fx0)= 3 a,eu (). (66)

k>0
Obviously, a similar procedure may be applied to the prob-
lem on the interval — oo < x<0.
We return now to the original problem (1), 2)on a
finite interval 0<x< L and seek a solution of the form

fx6)=a+bx+g@)+ 3 aeu,(0)

+ a e Py 9).

k<0

(67)

To determine the constants ¢ and & we define a function v by
WB)=v(8)—a—bg(6), where h(6)>0, (68a)
V@) =v(8)—a—bL — bg(@), where h(0)<0. (68b)

If fis to have the form (67) and satisfy the initial and final
conditions (2), it follows that Q,v and Q.v must belong to
Q.H, and Q-H,, respectively. Therefore we must have

Jh(ﬁ)v(ﬁ)d&zO: fg(ﬁ)h @)Ww@)do. (69)

Equations (68) and (69) determine @ and b uniquely.
The preceding argument reduced the problem to that of
determining a, so that the function

f*x8)= 3 adu @)+ ¥ ae Pu @) (70

k>0 k<O

Richard Beals 957



satisfies the initial and final conditions
0f*(0,0)=Qw(B), Q. f*L.6)=Quv®), D

where v belongs to the space H, determined by the condi-
tions (69). Define an operator M by

Mu, =e “"u, (72)
and define the function u by
u@)= Zakuk(ﬁ), (73)

where the a, are the same as in (70). Then

Y08)= Y au @)+ 3 ae” Mu,6)

k>0 k<0
= Pu(6)+ PMu(9), (74)
where P are the projections introduced in Sec. IIIL.
Similarly,
S*L,0)=PMu@B)+ Pu@d). (75)
Therefore Eqgs. (71) may be written
v=Q(Pu+PMu)y+ Q(PMu+Pu)=Vu+ W Mu
=VI+V '"WMu, (76)
where as before V', = QP+ QP and W, =Q.P. + Q.P..
At this point we have reduced the original problem to
the problem of determining the constants g, in (70), which is
equivalent to determining the function u of Eq. (73), which is
equivalent to solving (76) for u. Formally, the solution of
(76) is given by
u={I+V '"WM) 'V v
= S (VWM . (7
m =0

To show that the series (77) converges, it is enough to show
that there is a constant p < 1 such that

V7 'W Mu,V\W " 'Mu) < pu,u),, (78)
where (u,v) , is the inner product (34). Itis easy to check that
(Mu!Mu)l<p<uyu>l ’ (79)

where p is the largest of the numbers exp( —2 L |4, ), soitis
enough to show

Vi 'WuV [ W) <{uu), . (80)

Now (80) is true if and only if the analogous inequality is true
for the operator adjointto V' ;~' W,. As remarked at the end
of Sec. 111, the adjoint operator is — W, ¥, '. The desired
inequality for this operator is precisely (63). Therefore the
series (77) does converge and determines the solution u.
Since u determines the constants g, in the expansion (70),
the original problem is solved (in principle). In Sec. VI we
will take another look at the determination of the a, .

V. OTHER CASES

Our proof of the partial-range completeness and the
existence of solutions has been carried out for the case con-
sidered by Fisch and Kruskal', in which there are “diffusion
solutions,” i.e., solutions linear in x. This case is character-
ized by the condition (9). The cases (7) and (8) may be han-
dled in a very similar way; indeed the argument is slightly
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simpler in these cases. Here we indicated briefly how the
preceding arguments should be modified.

In case (7) we may drop the constraints (14) and take H
to consist of all functions satisfying the boundary conditions
and the condition

fD(B)(%Z—)ld9<oo.

The inner product (15) is positive definite on this space, and
the problem (17) has a unique solution « == Sv for every veH.
Again §'is a compact self-adjoint operator. Arguing as in
Sec. II, we find that any function « in H has an expansion of
the form (23), but with @ = 3 = 0. Therefore a solution to
(1) has an expansion (31), with @ = b = 0. The subsequent
discussion carries through also, and we obtain finally the
partial-range completeness result of Sec. III and the expan-
sion of Sec. IV, again without a term a + b [x + g(8)].

In case (8) we may drop one of the constraints (14) and
require in defining H that

fh(@)u(ﬁ)d&zo.

The inner product (15) is positive definite on H, and the
operator S defined above is uniquely determined, compact,
and self-adjoint. The arguments above go through once
more, giving the expansion (23) with 8 = 0, the expansion
(31) with b = 0, and the expansions in Sec. IV with the con-
stant term a, but without the term b [x + g(6)].

VI. CONSTRUCTION OF SOLUTIONS BY ITERATION

Suppose once more that condition (9) is satisfied and
that the original problem (1), (2) has been reduced to a prob-
lem of the form (1), (70), where v satisfies the conditions (55).
In the solution (69) one expects the principal contributions
at x = 0 to come from the terms with k£ > 0 (so 4, <0), and
the principal contributions at x = L to come from the terms
with k < 0. Therefore a first approximation to the solution
would be

2,x A L)
fo= Y a0 U + Y aree u,
k>0 k<O

where the constants are chosen so that

w0)= Y aoui(®) if h(6)>0, (81a)
00)= Y a,ou (@), if h(6)<0. (81b)

Then £, will satisfy Eq. (1), but we have
fo(0,6) = v(6) — 2 e ’A*Lakvouk(a ), if A(6)>0, (82a)

k<0
fLB)=v0) — ¥ e*a,ou,(0), if h(6)<0. (82b)
k>0
Thus we want to add a correction term f, of the same form as
/o, but with coefficients @, , determined by

- Se

“agou = 3 ay,u,, where £(6)>0,

k<0 k>0
- e'{‘La,‘._Ouk = > a4, where h(6)<0.
k>0 k<0
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Continuing in this manner, we construct f of the form (70),
where the coefficients @, are given by series:

a, = i Qi - (83)

m=0 .
The initial terms a, , are given by (80), and succeeding terms
are determined iteratively by

_ z eilALak‘muk = 2 Qpm 1 Ui, Where h(©)>0,
k<O k>0
(84a)

-y ragu, = Y @i 41U, Where h(8)<O0.
k>0 k<0
(84b)

This iterative procedure converges; in fact it corresponds
precisely to the solution (77). If we set

U= a, ., (85)
k

then (81) and (84) become

Viu® =v, Vu"+9 = — W,Mu"™, (86)
s0

WM =(—V '‘WM)/v (87)
and therefore

Y au = > um (88)

k m

is given by the series in Eq. (77).

In conclusion, we take note of the fact that although
equations like (81) and (84) determine the coefficients @, ,,
implicitly, it is not easy to determine them explicitly. The
reason for this is that the eigenfunctions #, are no longer
orthogonal when restricted to the regions where / (€ ) is posi-
tive or negative, so one cannot recover the coefficients sim-
ply by integrating the known function against the u, . The
coefficients can be approximated by choosing a least-squares
approximation with respect to the inner product (35), how-
ever. In fact if

Y a,u(6)=0v(0), where h(6)>0,
k>0
then

fhwboh(e)[ﬁ::ak”k(e)—v(ﬁ)]zde (89)

converges to zero as N— o, and similarly for the expansion
where 4 (0) is negative.

Vil. SUMMARY

In order to solve the problem (1), (2), we investigated
the operator 4,

Au(@) = %D(g)%’ (90)

when u satisfies the boundary conditions at 8 = a,,b,,
Suppose first that 0 is not an eigenvalue of the operator
A. Let u, be the eigenfunctions for the eigenvalue problem

Au (0) = L,ur(0), A #0, ()]
and number the 4, so that k¥ and A4, have opposite sign. In
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the problem (1), (2), definev(8) = v,(6 ), whereh (8) > 0,and
v(6) = v(0), where h (0) < 0; we may take v(6 ) = 0, where
h (6) = 0. Then the unique solution to (1), (2) has an
expansion

fx0)= Saeu @)+ 3 ae " u @), (92)
k<0

£50
where the constants a,, are given by convergent series 2a, ,,,,
and thea, ,, are determined implicitly by Egs. (81) and (84).

Suppose next that O is an eigenvalue of 4, i.e., that the
constant functions satisfy the boundary conditions, but sup-
pose also that

fh(@)dﬁ #0. 93)
In the problem (1), (2), define

v@)=v(0)—a, if H(6)>0,
v(@)=v(@)—a, if H({B)<O0, 94)
v(@)=0, if h(@)=0,

where the constant a is chosen so that

fv(ﬁ)h 0)de=0. 95)
Then the unique solution to (1), (2) has an expansion
f(x,0)
=a+ ¥ a,e"u, (0) + kzoakei‘(x_“uk(ﬁ), (96)

k>0
where again g = 2q, ,, and the g, ,, are determined by (81)
and (84).
Finally, suppose that O is an eigenvalue of 4, and that
Sh(0)dO = 0.Thenletgbeasolution of 4g = A. Inthe prob-
lem (1), (2) define

v(6)=v.(0) —a —bg(d), if h(B)>0,
v(@)=v(0)—a—b[L +g(@)], if h(6)<0, (97)
w@)=0, if h(8)=0,

where the constants a and b are chosen so that

fv(e)h 6)dé=0= fv(e)g(é’)h 0)do. (98)
Then the unique solution to (1), (2) has the expansion

fxO)=a+b[x+g@]+ I a.eu,(6)

k>0

+ 3 a e Pu0), 99)

k<O
where again @ = 2q,,, and the g, ,, are determined by (81)
and (84).

ACKNOWLEDGMENT

This work was supported in part by the National Sci-
ence Foundation, grant MCS78-02945.

APPENDIX: COMPACTNESS OF THE OPERATOR S

To show that .S is compact we write it as the composi-
tion of three operators, show that these operators are con-
tinuous with respect to suitably chosen norms, and show
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that one of the three is compact. For this purpose let
Ju(@)=h(@)Hu@d),

Bu@®)= S (Juw)u;'% ,

Ku(@)=u@)—c"' fugh,

where ¢ = fg(0)h (6) d6. Then S is the composition KBJ.

The operator X is continuous from the space of func-
tions u that satisfy the boundary conditions and the
conditions

fu(é’)d6=0, (uu) < o (A1)
to the space H with the inner product (u,v). In fact
(Ku,Ku) = (u,u).

The operator B is compact from the space L * of func-
tions with inner product fuwv to the space described by (A1).
In fact, let ¢, =, "*@, for k>1. Then the @, are an orth-
onormal basis for L 2, the ¢, are an orthonormal basis for the
space (A1), and Bp, = u, "*@,. Since p,—> oo as k— oo, it
follows that B is compact.

The operator J is continuous from A with inner product
(u,v) to L. Tosee this, write u belonging to H in terms of the
orthonormal basis {@, } in L %

U= Copo + z CkPi = CoPo + U, -

k=1

Then

j(hu)kCJ‘ ut = C(c(z) + Juf) )

(A2)
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With 1, as above,

[t £ 5= 5 (fon) - 50 fos)
- ZM*(JM%)Z: 3oy (uty)?

g:u‘] : Z <u7¢k)2</u'l”1<u’u> ’

since the ¥, are orthonormal with respect to the inner prod-
uct (u,v). Finally, since we are assuming that « is in H, we

have
0= Jugh = fqmgh — fu.gh ,
so

) 2
= (Joun) ([ or)<c: [ <con tum

(A4)

Combining (A2), (A3), and (A4) we get the asserted continu-
ity property of J. In fact, the operator J is also compact, but
we do not need this fact.
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Presented is a systematic approach to the transformation theories for the Ernst equation from the
viewpoint of the Backlund transformation. It is explicitly shown that the method of Clairin gives a
simple derivation of various transformations such as transformations found by Ehlers,

Neugebauer, and Harrison.
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1. INTRODUCTION

The Ernst equation deals with the stationary axially
symmetric gravitational field. As is well-known there have
been found many solutions.' Some people” have shown that
the Ernst equation has remarkable internal symmetries and
by using these symmetries have obtained the technique for
generating new exact solutions.

In recent years, the methods developed in the theory of
solitons have been applied to the Ernst equation. Belinsky—
Zakharov,? Maison,* and Hauser—Ernst® have shown that
the Ernst equation can be solved by the inverse scattering
method. Harrison® and Neugebauer’ have found Bicklund
transformations for the Ernst equation. In particular, Neu-
gebauer has discussed a method to construct various solu-
tions by using the Bicklund transformation.

The aim of this paper is the presentation of a systematic
method to find the transformations for the Ernst equation.
Employing the method of Clairin,® we shall explicitly show
that the Ernst equation has Backlund transformations. The
outline of the paper is the following. In Sec. 2, we shall for-
mulate the Backlund transformation for the Ernst equation,
and as a first nontrivial example, derive the transformation
given by Ehlers. In Sec. 3, we shall obtain three kinds of
Backlund transformations. Introducing a pseudopotential
for each Bicklund transformation, these transformations
will be found to be equivalent to those of Neugebauer and
Harrison in Sec. 4. The last section is devoted to conclusion
and discussions.

2. THE ERNST EQUATION AND THE EHLERS
TRANSFORMATION

The Ernst equation is written in terms of the Ernst po-
tential E as

0.9,E = —(1/4p)0;E + 3,E) + (1/T)3. Ed, E, (2.1)

where 20 = & +77,§_=7], and 2T =E + E.

In general, the Bicklund transformation for a second-
order partial differential equation in two independent varia-
bles is a pair of first-order partial differential equations
which relate a solution to the other solution. Following
Clairin, we consider the two Ernst potentials, Eand E ', relat-
ed by
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8.E' = P(3,Ed,EEE" cc.£m),
3,E' = Q(0,Ed,EEE" cc.&m), (2.2)

where c.c. denotes the complex conjugates of J. E, J,E, E,
and E'. We note that apart from the independent variable
transformation, Egs. (2.2) are the most general form of the
Bicklund transformation for the Ernst equation. The func-
tional forms of P and Q are determined from the
requirements:

(1) E' satisfies the integrability condition
d:9,E'=9,0.E’,

(2) E’ is a solution of the Ernst equation.

In the following we focus our interest on particular
forms of P and @ such that

P=ad.E+a,,

Q=00,E+b,, (2.3)
wherea, and b, (i = 1,2)arefunctionsof E, E,E’, E ', £,and 7.
In spite of this simplification we shall find that all the inter-
esting transformations are derived systematically from Eqs.
(2.2} with Egs. (2.3).

The integrability condition for £’ gives the following
differential equations

Voa, — Vb, + (1/T)a, —b,)=0,

Va, =0, V,b,=0,

d,a,— Vb, + Vaa, — (1/4p)a, — b,) =0,

d:b, — V,a, + Vb, + (1/4p)(a, — b,) = 0. (2.4)
Here, V, and V, (i = 1,2,3) are defined by

V,=03; +a,dg., V,=09z+a3;,

V,=3; +b0d,., V,=08z+b3z, (2.5)

Vi=0,3; + b3z, Vy=a,0; + b,9y..

From the requirment of (2) we have

V.a, + (1/T)a, — (1/T")a,b, =0, (2.6)
V., =0, (2.7)
d,a, + Via, — (1/T")a,b, =0, (2.8)
V.a, — (1/4p)a, — b,) — (1/T")b,a, = 0, (2.9)
V,a,=0, (2.10)

d,a; + Vaa, + (1/4p)las + b,) — (1/T")arb, = 0,(2.11)
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and

Vb, +(1/T)b, — (1/T")a,b, =0, (2.12)
V.b, =0, (2.13)
3.5, + Vb, — (1/T")bya, =0, (2.14)
Vb, + (1/4p)la, — b)) — (1/T"a b, =0, (2.15)
V,b, =0, (2.16)

8:b, + Vb, + (1/8p)a; + by) — (1/T)azb, =0, (2.17)

where 27" = E' + E . Since Egs. (2.4) are obtained from
{2.6)—(2.17), the independent equations which should be con-
sidered are (2.6)-(2.17).

At first we shall consider Egs. (2.6), (2.7), (2.12), and
{2.13) which determine the functional forms of ¢, and b,. By
factorizing a, and b, as

a,=(T'/T)f, b,=(T'"/Tg, (2.18)
we rewrite Eqgs. (2.6), (2.7), (2.12), and (2.13);

O fH (T /Tgdy f=(f/2T)g - 1), (2.19)

Ie f+(T'/T) fog f=(f72T)1 - 1), (2.20)

0:8+(T'/T)f3x g =g/2T)(f— 1), (2.21)

deg + (T'/T)g0: 8= (8/2T)(1 — g). (2.22)

It is seen that the simplest solution of Egs. (2.19)-(2.22)
is f=g = 1. In this case, we have

a,=b,=T'/T,a,=5b,=0. (2.23)
The integration of Eq. (2.2) with Egs. (2.3) and (2.23) yields

E'=CE +iD, (2.24)
where C and D are real constants. This transformation is
rather trivial.

Next we find a simple but nontrivial solution of Egs.
(2.19)-(2.22);

f=g= —(E —im//(E + im), (2.25)
wher m is a real constant. The solution (2.25) gives
T' E—im
a=b6= - — )
T E+im
a,=b,=0, (2.26)
and then
9.E' = — r E—_ﬂaéE,
) T E+im ~
9E = L E-imy g 2.27)
T E+im
By integrating Eq. (2.27), we have
E'=(E+ic)/(iyE+d), (2.28)

where ¢, d, and y are constants. This is equivalent to Ehler’s
transformation which is extensively used by Kinnersley.

3. BACKLUND TRANSFORMATIONS FOR THE ERNST
EQUATION

In the preceding section we obtained two simple solu-
tions (2.23) and (2.26). In order to obtain more general solu-
tions we introduce a function y which satisfies the differen-
tial equations
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gy =3z =a/T,

Opy=0dpy=a/T". (3.1)
Here a = a(y) is a function of y. We assume that fand g
depend on ¥, £, and 7 only, and do not have the explicit

dependence of E, £, E’, 3, and E. Under the assumption
we have

I f=3sf=a/T)f, deg=0r8=(a/T,
O f=0p f=a/T")f, Ipg=0z8=a/T"g
(3.2)
where f = d,f and ¢ = d,g. By using Egs. (3.2) we rewrite
Eqgs. (2.19)-(2.22) as

_Se=l (3.3)
2 g+1

g 8 /=1 (3.4)
2a f+1

ef=1. (3.5)

We further assume that a, and b, can be factorized in
the form

a =T uly.£m),

b, = T'v(y.5,m). (3.6)
Then equations (2.8)—(2.11) and (2.14)~(2.17) are reduced to

9, f=f(f—g/p(f+ l)ig+ 1),

9. f=(f—gl g+ 1)/20(g + 1} (3.7)
9.8 =glg —f)/p(f+ g+ 1),
d,8 =g — g+ 1/2p(f+ 1), (3.8)
and
= _l_g_:i’ _1f-8 (3.9)
2p g+1 2 f+1
By integrating Eqgs. (3.1) we obtain
Jd}// 2a=logd, {3.10)
where @ is defined by
0=0,TT'. (3.11)

In Egs. (3.11) 8, is a function of £, 17 only.

In the following we will obtain three kinds of Biacklund
transformations.

(i} f = g: From Eqgs. (3.3)—(3.5) we have

VA ity (3.12)
2 f+1
=1 (3.13)

This can be easily integrated and f( = g) is given in terms of
by

f=g=[2+6+(0°+40)"%/2. (3.14)
Equations (3.7)-(3.9) give
u=v=0, @,=C=const. (3.15)
Thus we obtain the first Backlund transformation
’ 2 /2
6EE’=I——2+9i(0 + 40) 9,E,
¢ T 2 :
’ 2 /2
9 F = L 24007 +46) 75 p (3.16)
T 2
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where 8 = CTT".
(ii) f = 1/g: Equations (3.3)—(3.5) are reduced to

- L 127 (3.17)
2a f+1
f=7 (3.18)
Integration of Eq. (3.17) yields
=120+ 1+ (46 + 1)"/%)/26,
g=1[20+1—(46 + 1)'/?]/26. (3.19)
Equations (3.7) and (3.8) imply that
d;logf = — 1/p, 4, logd= — 1/p. (3.20)
From Egs. (3.20), 6 is given by
0= (c/pTT", (3.21)

where ¢ is a constant. By substituting Eqs. (3.19) into Egs.
{3.9), # and v are expressed as

u= —[{46 + 1)'’* + 11/4p6,

v=[(40 + 1)'? —1]/4p6. (3.22)
The second Bicklund transformation for the Ernst equation
has therefore the following form:

T 2041446+ 1)

9.E' = 9.E
g 20
_ T 1+@9+ 1)
40 g '
’ . 1/2
o= L 20110417, o
T 26
’ _ 1/2
SR e, oV (3.23)
40 0

The third Bicklund transformation is therefore
dE' = T'(k + 1)[92_ 2k

276 k+1

x[e—li(ehzi‘—leﬂ)”z],
k+1

T'k+1)

: 2 k—1
d. E =____[62+___0 140+ 102 —-22—"1 1/2]
) prmaREI AR PR

2TkO
k+1[ k—1

+ it 11922kl 1”2},
4pk6 ( k+1 +1)

k—1
=0+ 1+(0-1)62—2—2F 1"2]
+1£(6-1) P +1) 3. E +

where & is given by (3.21).
(iii) f = 1/g: By.integrating Eqs. (3.3) and (3.4) we find
that
S=(k+ 10>+ 1)—2k0+ (k+1)0—1)
{67 —2[(k — 1)/(k + 1)]6 + 1}'/?)/26,
g=(—(k+1)@*+1)—20 Fk+1)6+ 1)
(6% =20k — 1)/(k + 1)]6+ 1}V?)/2k0,  (3.24)
where @ = — 6, k = 1/k. Substitution of Eqgs. (3.24) into
Egs. (3.7) and (3.8) leads to

6. = —{1/20)0, 6, = —(1/2p)6, (3.25)

ke = —ktk+1)/2, k, =(k+1)/2p, (3.26)
from which we find

8 = (ic/p)TT", (3.27)

k=(ng—i)/E+il), (3.28)

where c and / are integration constants. By substituting Egs.
(3.29) into Eqgs. (3.9), we obtain

k+l[ (2 k—1 )e]
u="T1g_14(62_25=1g 1),
400 =+ PR
k+1[ (2 k—1 )x]
=Kt e (er—25=1e 1 0)] (329
T kel T E k+1 13:29)

T'k+ 1)
4p6

(3.30)

where & and k are defined by Egs. (3.27} and {3.28)
respectively.

4. PSEUDOPOTENTIALS

The Bicklund transformations obtained in the previous
sections have very complex forms. They, however, are re-
written in more simple forms by introducing appropriate
pseudopotentials.® In this section we define the associated
pseudopotentials with the Backlund transformations.

(i) When we take f given by Eq. (3.14) as the pseudopo-
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tential g, the transformation (3.16) can be written as
O.E'=(T"/T)p0:E, J,E'=(T"/T)p,d,E, (4.1
where ¢ @, = 1, and satisfies

@i ;
Ao, = lZT (@10 E + J.E),

—1 -
3, ¢, = ‘P'ZT (@9,E +3,E). (4.2)

This is essentially equivalent to the 7, transformations of
Neugebauer.'?
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A (i) When we take f given by (3.19) as the pseudopoten-
tial @,, the second Bécklund transformation {3.23) becomes

, T T’
d.E' = _‘P28§E+ —{1 —¢@,),
T 2p

T;

, 1 T' —
g E=Llopy Lozl (4.3)
T ¢, p @,

where @, is real and satisfies
Oepr = — (@, — 1)/4T'] [l@: + 1)(‘?§E + 3§E_)
+ (@2 — DOE — 3,E)]
+ (1/4p)(@> — g, + 1),
3,¢:= — Ug. — 1)/4T 1[l@s + WO, E + 3, E)
— (@2 — 1)8,E—3,E)] + (/4p)p, — V)@, + 1).
(4.4)

This Bdcklund transformation is equivalent to the I, trans-
formation of Neugebauer.

_J

(i) We define the pseudopotential g, associated with
the transformation (3.30) as

8= —(k+ l)(p;/(\/ —k @5+ Yip; +\/ — k) (4.5)
then the third Biacklund transformation is found to have fol-
lowing form:

T oy —k@st Uy
T ¢73+\/—k 7

TI
+ E;'(\/ —k¢3;+1);

JE' = —

! — 1
3 E = — L_x[__k_?LavE

deps = (1/72T) [¢3(\/ —k @+ VOE—(ps+ —k)IE - W =k /4p)les — Ni@s + 1),

3,0 = (12T — k) =y =k @, + 10,E + @iy + | — k 18, | — (18] — k pligs — 1y + 1)

This is equivalent to the Bicklund transformation of
Harrison.

5. CONCLUSION AND DISCUSSIONS

By using the method of Clairin we have obtained the
four kinds of Bicklund transformations for the Ernst equa-
tion. These transformations are equivalent to the transfor-
mations given by Ehlers, Neugebauer, and Harrison. It is
clear that the Backlund transformation is not unique. We
have assumed the functional forms of P and @ as given in
Eqgs. (2.3). However, we have observed that Eqs. {2.3) are
general enough to cover all the known transformations.

Recently Belinsky—Zakharov, Maison, and Hauser—
Ernst have shown the existence of linear eigenvalue prob-
lems in the spirit of Lax.'' There, the Ernst equation arises as
the compatibility condition for the linear eigenvalue prob-
lem. In the theory of solitons, it has been known that the
Bicklund transformation and the inverse scattering method
are closely related.'? Then, it is a very interesting problem to
clarify the relations between the Backlund transformations
found in this paper and the inverse scattering problems dis-
cussed by Belinsky—-Zakharov, Maison, and Hauser—Ernst.
This problem is left for a future study.
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We establish and study a transformation which connects the Schrodinger, the Klein-Gordon, and the Dirac
operators. This provides an equivalence between their associated direct and inverse problems, and inverse
spectral transforms.

PACS numbers: 02.30.Jr, 03.65.Nk

I. INTRODUCTION blem of giving conditions on the spectral data so that the
Marchenko equations do possess a (unique) solution

We study here the relations that connect the Schrj- which leads effectively to a potential.® The interested

. 1 s 2 . 3 s
dinger, ‘Klem Gordon fmd Dirac® inverse problem reader may refer to Ref. 1 for (S), Ref. 5 for (D) and
(IP) and inverse scattering (or spectral) transforms
(1ST) Ref. 7 for (K).
' . In the (D) case, the eigenvalue is €£ but we prefer to
Some of the arguments have been previously sketch- work with momentum %. Then €E appears as a double-
ed,! with the result that there exists a transformation valued function of 2. The choice of the determination
relating the two couples (7, q) and (U, @) of potentials of the square root of &*+ m® makes k varying on a two-
i i 5.
of the Dirac and Klein-Gordon systems: fold Reiman surface {cut from ém to =, and from ~ im
to — i=), each sheet of which is indexed by the sign ¢
(D):do, +ieEq, - 0 q(x) Ye(k, ) =0, g(x) om , of the real part of €ET The spectral data are:
r(x) O 7(x) s
(.1) Jo=14Rb(k), keR; k,, p(ImkS,5>0), Cp, n=1,..,Np,
Ulx)~0 €=4, (I1.5)
(K):{ai+k2_ U(x)_€EQ(x)}ys(k, x)—_—o’ (x)tm }
Q)0 €2 with the Fourier transform:
where the momentum % is related to the energy ¢£ by 1 (*dp -im —€E+pk . .
k*=FE*- m* and where € =:. It is shown here that the H p(u) :Z 4n j_; EENCE+P  ~im Rp(k)e™™
transformation gives a complete equivalence between ;5 )
IP and IST associated with (D) and (K). We show more- ZD Ry (‘"” - EE"'}") . (11. 6)
o 3 —l ————— .
over Fha? the well-known IP and IST for the Schrddinger C4 9¢E \€E+Ek  —im okt mD
equation: n
) ) The matrix Marchenko system reads
(S):qal+ k"=~ Ulx)(z(k, ) =0, U(x)7x0, (1.3) -
can be derived from (K), and thus from (D) too. D(x, y) + Hp(x +y) +f du D(x, w)Hp(y+9)=0 for y>x,
Il. THE INVERSE PROBLEMS (IL.7)
. and the potentials » and g are obtained from D(x, x) by
er first have t‘o cc?me back to the procedure an? for- (we write another useful relation)
malism of IP which is already well known for (S): let
% be the set of spectral data 0 -(g-m
[0'3, D(x, x)]: s
rY—m 0
Ss= {Rs(k), keR; kB, s, Imk, s>0),C, s, n=1, ..,Ns} , o 1 @.8)
yoo II.8
(I1.1) {65, 01 D(x, )] = (_ 1 0)] (rg—m% .

define the “Fourier transform” of /5 as

1 ” »”s ] The (K) case is a little more complicated and we shall
Hs(”)zgﬂ ‘[_‘ dk R s(k)e'™ - ’Z Cy, s explik,, su) , see that it is an interesting aspect of the above-men-
i

(11.2) tioned transformation in that it provides an easier way
compute then the kernel S(x,y) from Hg(x +y) out of the to solve the IP for (K). The set of spectral data is

Marchenko equation: - defined like .%, by
Stx ) +Hs(xty) + [ auS(r,u) Hywey)=0  (IL3)
for y >x. * € e ‘ € ¢
= c R, > = . = .
The potential U(x) is finally obtained by T { KEDEERiRL o (Imkr, g 20), Cruy n =1, -, Nip € =2
Ulx)=-2dS(x, x) . (11.4) (11.9)
Here, and in the following, we do not deal with the pro- As shown in Ref. 2, we need to define three types of
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Fourier transforms of Y’K, namely:

1 ,
HP () :Z {4—1:.{ dk (€E)2R(k)et ™

€
Ny

- éiE((E)”'%‘""
|

The Marchenko system of inversion equations reads:
for y >x,

" CZ,K}, p=1,2,3. (IL.10)

" K

K(x,y) + F()HP (x +9) + fw du (K (x, W HP (u+y)

x

- Ko(xe, HS (u+ )] =0,
(11. 11)

—Ky(x,y) + F(OH (x+y) + fm du [K(x, ) HS (u+y)

- K,(x, ) HE (s + )] =0.
(I1.12)

[The function F{x) is introduced to correct the asymptot-
ic behaviors of the Jost solutions of (K) for large values
of |k| (see Refs. 2 and 7.)] The kernels K,,, solutions
of (II.11) and (II.12), lead to potentials U(x) and Q(x)
via

- dLF(x) + U(x)F(%) +2d,K (x, x) + Q(x)8,K,(x, ) w0

(11.13)
Q) F(x) = 2d K(x, x) =0, (I1.14)
2d F(x) + Q(x)K,(x, x) =0 . (11.15)

I1l. CONNECTION OF DIRECT SCATTERING PROBLEMS

A. Connection of (D) with (K)

We now wish to transform the system of two coupled
first order differential Equations (I.1) into a second
order differential equation of type (I.2). The relation
that we search for is obviously

‘e . be ; €
Y*(k,x):a‘(k)<" Ui, ) bk, ”)(” (k’x)> :
€ . € . € .
c(nsk, x) d(msk, )\ yilk, x) (II1. 1)
where the functions a, b, ¢, and d remain to be defined
(subscript ¥ means partial derivative with respect to

x). We shall now omit € and recall it whenever neces-
sary.

In Ref. 4 we computed q, b, ¢, and d by demanding
that the transformed equation [obtained by inserting
(If1.1) into (I.1)] is the {K) equation. For the purpose
of getting more information, we start with the assump-
tion that the equation governing y(k, x) belongs to a set
of scattering problems which possess the same spec-
tral data as (D). |[Thewordsame is taken in the sense
of

T p(k)=Tx(k) for Im(k)=0.] (I11. 2)

The result is

Theorem 1: In the case of ¢ and » going asymptot-
ically to the same constant m, the Klein—Gordon equa-
tion is the only second order differential equation which
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possesses the same spectral data as the Dirac equation.

Proof: We may first exploit the compatibility condi~
tion [which is that Y(k, x) is a solution (D)|, expressed
in the fact that v(k, x) becomes a solution of a system of
two second order differential equations. These two
equations must be linearly dependent; therefore

d=uvh, (IIL. 3)
vla+tb,+iEb—qd)=c +d - iEd-vh, (IIL. 4)
vla,tiEa~qc)=c, - iEc ~ 7a, (1L, 5)

v(x) being an arbitrarily choosen function. The other
relation needed to solve this system is obtained from
(IIL.2). One has to use the definitions of the Jost solu-
tions (and spectral data) of (D) and (K), (the reader
may refer to Refs. 2 and 3 whose notations are em-
ployed here), to see that (III. 2) reads:

ok, x), Wk, x)|= Wlg(k, ), fk, x))(1/2ik) . (I11. 6)

[The symbol | ¢, ¢| denotes the determinant of the ma-
trix of the column vectors ¢ and i, and W{(f, g} is the
Wronskian of functions f and g.| By inserting now
(III. 1) into (I1I. 6), one gets a necessary condition to
achieve (III.2):

8 (ad~bc)=0 . (1. 7)

Let us insert (III.7) into (III.4) and make use of (III.3)
to get

hd[- 2iE+v,/v+qv—r/v]=const. (111.8)

Taking advantage of the fact that (III. 8) holds for € =14,
(that is, for +E), we may write

hd=1, v/vtqu-v/v=2, (1. 9)

where Z is an arbitrary constant. We have set bd=1,
which simply corresponds to an adjustment of a(k) in
(II1.1). Hence (IIL.3) gives

d=v'"%, b=y, (I1I1.10)
A little algebra applied to the system (III. 4) and (IIL. 5),
changes it into a Kramer system for ¢ and ¢, the solu-

tion of which is

a=vY -iE+Z/2+u],

(I11.11)
c=v"iE+Z/2+w|,
where
w=qu+v/v. (III.12)

At this point, the mapping (IIL. 1) is completely deter-
mined: for given  and ¢, first solve the Ricatti equa-
tion (I, 9) for »(x);® then obtain g, b,c, and d from
(IT1.10) and (ITI.11).

Inserting now (III. 1) into (D) with the above defini-
tions of functions a, b,c, and d, we are led to a Klein—
Gordon type equation for y(k, x):

{62 + (R +2%/4) = (W' = w, - m*) +(E+ iZ/Z)iv,/v}y(k, x)
=0. (II[.13)
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The final step of this proof consists of assuming that
the potentials that appear in (III. 13), namely

(I11. 14)

approach zero asymptotically. This implies in partic-
ular that »(x);y1. Thus we can see from Equation.
(II1.9) that, in the case of ¢(x) and »(x) going asympto-
tically to the same constant m, we have Z=0, and

(II1. 13) is nothing but (K). We shall denote by F the
transformation (7, q) - (U, @) defined by (III.9) for Z=0,
(I11. 12), and (11I.14).

U=wt=-w,-m*, Q=-iv /v,

To end this section, we give below the whole relation
between .%, and .y induced by assumption (IIL. 2), (the
proof of the following statements can be found in Ref.
4). (IIL.2) implies that both (D) and (K) have the same
bound states:

Bpp=kyg,» Np=Ng, (I11. 15)

and we have*

_ (k) _(ExE)T
RD(k)—a(_k) Ry(k), Ol(k)—( 5% ) E+k+im’
(I1L. 16)
__a(k) c .. (1. 17)

nmD— a( - k) pok mK
B. Connection of (D) and (K) with (S)

It seems clear that, setting @ =0 and m =0 in (K),
Sy must reduce to J5. The proof is not obvious and
we work it out by using (D) as an intermediary [note
that, for m =0, (D) reduces to the Zakharov—Shabat
system (Z8)* 1%}, Writing (III. 16) and (IIL. 17) for m =0,
and remembering that E=£ for Re(k)> 0, and E=-F
for Re(k) <0, we find

(k) =— Ry(k), Rp(k)=Ry(k)for Re(k) =0, m=0,

(I11.18)
b(k) =R}(k), Ry(k) =~ Ry(k) for Re(k)<0, m=0.
But for @ =0, the solutionof Fis  =¢,and we may use

the results of Ref. 9 together with the particular pro-
perties of the spectral data of (ZS) induced by r=g4
[see Ref 10 formula (4.24), p.271], to get

v H(k)==Ry(k) for all real & (and m =0). (111, 19)
Therefore
Ry(k) :R;(k) for all real & (and m =0), (111. 20)

and this reflection coefficient is nothing other than
Rg(k). The same procedure holds for the transmission
coefficient TK(k) and the normalization constants C wk*
Ti(k)=Ty(k) =Ts(k), Ny=Ny=Ng,
Crx=Crx=Cps . (im. 21)

On the other hand, these statements lead to a connec-
tion between (Z8) and (S) spectral problems

Corollary 1: for r=gq, (ZS) is equivalent to (S} for
the potential!

(111.22)

The corresponding relations among the spectral data
are readily given by (III. 18), where one replaces R (k)

2
U=q"-4q;x .
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by Rg(k). In contrast to the case »=-1, (see Ref. 10,
Appendix 3) the transformation (III. 22) is not singular.

IV. CONNECTION OF INVERSE PROBLEMS
A. Connaction of IP for (D) with [P for (K)

(D) and (K) having the same spectral data, and their
potentials being related by F, we may state

Theorem 2: the solution of the IP for (K) consists
in first solving IP for (D) and then obtaining (U, @)
from (r,q).

The proof of Theorem 2 will be concluded if it is
shown that the inversion equations (II.8) for (D) are
equivalent to equations (II.13), (II.14), and (II.15) for
(K). For this purpose we look for a set of relations
which connect the kernels K(x, y) and K,(x, y) to the
matrix kernel D(x, y)=(3} 52). This is done with the
help of the definitions of these kernels from the Jost
solutions of (D) and (K) respectively:

e 1 172
Wk, x)=[e”"+f dy D(x,y)e”‘”] m <m) ,

2%
+
ETEk (IV. 1)

Sk, x)=F(x)e“’+£ “aylK(x, y) - EKa(x, 9)le" 7y )

We compute the quantity

2 \'/?
X w(ky x)e-““]

on one hand with the help of (IV.1), on the other hand
through (I11.1) and (IV.2). We use partial integration
techniques to eliminate all the terms containing % as
a factor, and keep in mind the fact that all the results
are valid for €=+. On calculating, we arrive at two
sets of four relations which arise from a vectorial
equation of the type

Alx, x) + €EB(x, x) + fm dy cos(k(x ¥y))
x[A’(x, y) + €EB'(x,y)]=0, (1v.3)

valid for all k and €. The solution is A=A’=B=B'=0,
namely

F(x) + iKx(x, x) = v(x)''%, (IV.4a)
F(x) = iKy(x, x) = v(2)"/?, (1v.4b)
w(x) F(x) +d F(x) = K,(x, x) — i8 Ky(x, u) .
=v(x)!*(m - Dy(x, %) = Dylx, %)) , — (IV. 4c)
W) + d () = Kyl )+ 0. Kol )|
=v(x)"%(m = Dy(x, x) = Dy(x, 1) , (IV. 4d)
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(1 ~ By)(Dl(X, y) + Dz(ny )]

=(8,+ (DK (x, y) + ilm’ = 8DKy(x, v) (IV.5a)

(m ~ 8 X Dy(x, v) + Dylx, y))

= (0, T w(2)K (x,v) = i(m® = 8K y(x, y) , (IV.5b)
Dilx, y) = Dy(x, v) =K (x, y) = (8, + w())Ky(x, ¥) ,
(IV.5¢)

Dy(x, v) = Dylx, ) = = Ky(x, y}=i(8, + 10(x))Kox, y) .
(IV.5d)

1t is obvious that the system (IV.4a) and (IV.4b), with
v(x) =exp( - i‘f;“ du Q (#)), is nothing other than the sys-
tem (II, 14) and (II.15). The following step consists of
replacing the D,’s by their expressions given by (II. 8),
computing the quantities 8 K,(x, v} |,., and K,(x, x) from
(IV.4c) and (IV.4d), inserting the results into (II.13),
and finally verifying that (II.13) holds. Therefore the
system (IV.4) is equivalent to the system (II.13),
(I1.14), and (II.15), which concludes the proof of
Theorem 2.

One could show, moreover, that the system of partial
differential equations (IV.5), together with the Cauchy
conditions (IV.4), defines completely the relations be~
tween the kernels D(x,y) and Ky, +(x,y). Let us finally
notice that for @ =0, (and thus for »=g4) the system
{IV.4c) and (IV.4d) gives rise to the transformation
(I11. 22).

B. Connection of IP for (K) and (D) with IP for (S)
We now wish to show the following statement:

Corollary 2: in the case of ¢ and m being zero, the
IP for (K) reduces to the IP for (S).

Proof: First, one can readily verify from (III.20)
that the Fourier transform (II1.10) of % reduces to

B (w)=0, HP (W)=Hgu), HPu)=0. (IV .6)
Second, for § =0, the solution of (II.14) and (I1.15) is
F(x)=1, Ky(x,x)=0. (Iv.m

We now write the system (IV.4c) and (IV.4d) for » =g¢,
that is to say, for Dy(x,x)=D,(x,x) and D,y(x,x) =
D4(x,x), and obtain

3K ox, 1) |, =0 . (Iv.8)

Thus Eq. (11.13) reduces to (II.4). We now have to ver-
ify that the system (II.11) and (II.12) does become the
Marchenko equation (II.3). K,{x,y) is the solution of

Kz(x,y)+f du Ko(x,u)H{u +y)=0 fory>x, (IV.9)

with the initial condition (IV.7). This solution is thus
assumed to be'?

Ky(x,9)=0, (1v.10)
and Eq. (II.11) reads like (II.3) for S(x,y) =K (x,v).
V. THE INVERSE SPECTRAL TRANSFORMS

We shall now discuss some consequences of the above
results for the IST method. This method consists es-
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sentially of assuming that the initial data | say U(v,0))
of a nonlinear evolution problem is the potential of
some scattering problem (the form of the solvable non-
linear problem depends directly on the chosen scatter-
ing problem). One may then obtain the spectral data

at ! [ see, for example, Eq. (V.8) below]| and get U(x,¢)
through the inverse problem. Let us now recall the
way IST works in the three cases considered. The IP
for (S) allows us to solve the following nonlinear evolu-

tion equations (NEE)!13:
{o, +A(STe,} Uly,N=0, (V.1)

in which A(k?) is an entire function of k* and S is the

operator
S'=- Rt +uU-ud. (V.2)

Here and in the following, the operator [ is defined by
its action on a generic function f(x,/) as

-

= [ av s .

When using the results of IP for (K), one may solve’

U(x,t)
{at+A(Kf)ax}( )ZO 3

(v.3)

. V.4)
Qx,0) (
where A is now an entire function of <E and K is given
by
(V.5)

0 S*+m®
B=\1 ¢-teg

Finally, if one uses IP for (D), one will find the follow-
ing set of solvable NEE?:

r{x,t)
{2, +A(D )2} D) =0,

A being an entire function of e£ and D" being defined by

d,+2vlg -2rly
2D = -8, -2qlr) "

2qlq

There is not much to say about the connection be-
tween IST for (K) and IST for (D); the transformation F
previously defined makes no explicit reference to the
time dependence. There thus exists a one-to-one cor-
respondence betweeen solutions of NEE (V.4) and (V.6),
especially as(K)and (D) possess the same spectral
data, which both evolves according to

(V.6)

(v.n)

{8, + 2RNE )Rk, 6) =0, 2,T(k,()=0, {3, + 2k, A(E )IC (1)
=0. (v.8)

But we must pause a moment to look into the case
¢ =0 (or equivalently » =¢q), for indeed we shall prove
that:

Theorem 3: in the case ¢ =0, the IST formalism for
the (K) eigenvalue problem remains valid only when
A(E) is an even function of E.

In order to see this, let us consider the NEE (V.4)
for @ =0 and for A(E)=£%""1; it reads

O-C)

(V.9)
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which leads to

(o)-{10)

Therefore U(x, ) does not evolve in time, which proves
Theorem 3.

Furthermore, in the case m =0, when A possesses
an odd part (say A,) the relation (III.20) does not hold
anymore for /#0; indeed we have

R(k,t)=Rg(k,0) exp[-2ik(A, £ A)t] .

(v.10)

(V.11)

One can thus readily find out that the Marchenko
equations (II.11) and (1I.12) have no solution, since
(v.11) implies that (IV.6), and thus (IV.10), are no
longer valid.

Note that Theorem 3 becomes readily understandable if
one takes account of the fact that the procedure of in-
version for (5) works with A as an entire function of
k%, that is, and even (entire) function of k.

Another argument for completing the proof of Theo-
rem 3 can be found in the study of particular solutions
of NEE (V.6), named solitons, obtained by assuming
that the input data (»(x,0),¢(x,0)) possess a set of
spectral data reduced to a discrete spectrum only. The
derivation of such a soliton solution is given in Ref.

3, the result of which is:
for Rp(kR)=0, Np=Np=1, k, p =k, p =it ,(0<u<m),
Cp(0)==C%(0)=C, we found

(u/E +i) exp{ 2ul ] Hu/E = i) expl| — 2ui ot
cosh[ 2u(x —xy = Af =) ’

(v.12)

g(x,t) —m =2u

(w/E ~ i) expl 2ul gt] + (u/E +i) exp| - 2ul t]
cosh 2u(x~ xy ~ A f =)

v(x,t) ~m=2u

(v.13)

where B2 =m? —u? and x =(1/2u) In(C/24). It is clear
from (V.12) and (V.13) that to get » =¢ one must set
Ay =0,

It will be of interest to compare (V.12), as an example
for A=-4E? solution of the modified Korteveg—de
Vries equation:

(V.14)

to the corresponding solution of equation (V.4), which
reads in that very case:

q: +qxxx - 6q2qx+ 2m2qx:o ’

U, +U,, —6UU, —4m?U =0 . (V.15)

The interest in such a comparison is that, for the
above chosen set of spectral data, q(x,t¢) given by
(v.12) is a soliton that comes back (often called boom-
eron'!), But the Korteveg-de Vries equation (V.15) is
known not to possess reflected solutions and thus the
transformation (I11.22) will change a boomeron into

a soliton. Let us now compute this soliton solution of
(V.15); we shall not repeat the procedure, which is
exactly the same as in the () case! with the only dif-
ference being that A(E) is now - 4(m® -u?) in spite

of 4. Nevertheless, one may pay attention to the re-
lation between C g and C g induced by the assumption
Cp(0)=-Cp(0). Using definition of the normalization
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constants C (see for example Ref. 2), and the relation
(II1.16), one shows that

Cp(0)/C 5(0) = =Cg(0)/CL(0) , (V.16)
and therefore
Cg(0)=Cx(0) . (V.17)

This is the expected result. Indeed, the same argu-
ments as those employed in the proof of Theorem 3
lead us to choose a set of spectral data so that the sys-
tem of Marchenko equation (II.11) and (I1.12) does
reduce to (I1.2), that is to say, so that (IV.6) holds.
For the given set of spectral data, the relation (V.17)
is the condition which ensures that (IV.6) holds.!’

The solution of (V.15) is, finally

U(x,t) =20 sinh [ u(x — 4(u® =¥t =2")] (v.18)

where 2" =(1/2u)In(C’/2u), and C’ is the normalization
constant (V.17). For m =0, one finds the one-soliton
solution of the KdV equation. The m? term simply cor-
responds to a translation of the coordinate system at
speed 4m?. can be verified directly on (V.15): by
setting

8, =9, ~4m?3, ,

one gets the usual KdV equation for U(x, 7).

(v.19)
16

'For the one-dimensional IP see L. D. Fadeev, Dokl. Akad.
SSSR 121, 63 (1958), and also Z. S. Agranovich and V. A.
Marchenko, The mverse Problem of Scattering Theory (Gor-
don and Breach, New York (1963); for the associated IST,
see C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M.
Miura, Commun. Pure Appl. Math. 27, 97 (1974).
2The IP is solved in J. JP. Leon, Lett. Nuovo Cimento 29,
45 (1980) and the IST in J, JP. Leon, Nuovo Cimento 28,
107 (1980).
3J. JP. Leon, J. Math. Phys. 21, 2572 (1980).
4J. JP. Leon, Lett. Math. Phys. 5, 1 (1981); for the m =0
case, see M. Jaulent and I. Miodek, Lett. Nuovo Cimento 20,
655 (1977).
’In Ref. 3 we studied the more general case r(x) g »* and
q(x) gz q*, with the constraint »*¢*=»"g~=m’. We shall not
work here with this generalization, which would unnecessarily
complicate the results.
8This problem is partially solved in the radial case by M. Gasi-
mov and B. M. Levitan, Dokl. Akad. Nauk. SSSR 167 (1966).
"For the case @ =2V and U=-V?, see R. Weiss and G, Scharf,
Helv. Phys., Acta 44, 910 (1971), and H. Cornille, J. Math.
Phys. 11, 79 (1970).
#The technique of solution of (IL.9) is given in Ref. 4.
9The complete relation between Jost solutions and spectral
data of (D) with m =0 and (ZS) problems is given in the un-
published work by J. JP. Leon, “Theése de Doctorat de Troi-
siéme Cycle,”U.S. T, L., Montpellier (June 1978).
1M, J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur,
Stud. Appl. Math. 53, 249 (1974).
URelation (III. 22) is, for m =0, the Miura transformation,
R. M. Miura, J. Math. Phys. 9, 1202 (1968).
2As said before, we always suppose that such Fredholm equa-
tions las (IV.9)], have a unique solution.
13A general survey of the theory of IST may be found in M. J.
Ablowitz, Stud. Appl. Math. 58, 17 (1978).
14This denomination has been introduced by F. Calogero and
A. Degasperis, Nuovo Cimento 39 B, 1 (1977).
These arguments are in fact the a posteriori reason why we
chose C*(0)=-C-(0) in Ref. 3.
®Thanks are due to Dr. J. C. Fenandez for valuable comments
concerning this point.
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A new class of symmetries are given for the Dirac equation without external fields. We consider the two cases

of massive and massless particles.
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1. INTRODUCTION

It is convenient to divide the class of transformation
groups in Lie tangent transformation groups® and Lie-
Bicklund tangent transformation groups.? In a previous
paper? one of the authors has investigated Lie-Backlund
tangent transformation groups for Maxwell’s equations
in the absence of sources. The infinitesimal operators
have been given.

In the present paper we investigate the Dirac equation
without external fields and infinitesimal symmetries.
We consider three cases: the Dirac equation without
rest mass, the Dirac equation with rest mass, and the
Dirac equation with a nonlinearity H(Jy)-

It is well known that the Dirac equation with zero rest
mass admits the 15-parameter conformal group which
contains the 10-parameter Poincaré group. In the fol-
lowing such transformations (sometimes called trans-
formations of geometrical type) are not considered.
Rather we study infinitesimal symmetries of the type
S mid)a/a¢p,;, where ¢;(x) (i=1,...,m) denotes the
field under consideration and x=(x,, x,, x;, x,) (x, =ct).
Moreover, we consider Lie-Bicklund tangent trans-
formation groups.

2. DIRAC EQUATION WiTH VANISHING REST MASS

The Dirac equation with vanishing rest mass is
given by the following linear system of partial differen-
tial equations:
ih Dy 9) = i = (r48) =0, 2.1)
& ax, 9x, 1
where x,=ct and $=(4,, §,, ¥5, 9 * (T means transpose).
Y1» ¥2» 73 and y, are the following 4 x4-matrices

00 0 - 0 00 -1
00 =i 0 001 0
Y1700 i 0 ol|" 7|0 10 of
i0 0 o 100 0
(2.2)
00 -7 0 100 0
00 0 i 01 0 0
a7l 0 o o Y |oo -1 o0
0 -i 0 0 00 0 -1
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From Eq. (2.1) it follows that

3 L b m i (v, =0. 2.3)

ET19% 83Xy

Let x =(x,, x,, x5, x,). Since §,(x) (k=1,2,3,4) is a
complex quantity we put ,(x) =u,(x) +iv,(x), where u,(x)
and v,(x) are real fields. Then we obtain the following
coupled system of eight linear partial differential equa-
tions

—8u,/3%, —80,/8x, — 81, /DX, — Bu,/B8x,=0,
—8,/8%, +305/8%, +0U, /3%, — BU,/3x,=0,
Bu,/dx, +30,/8x, +0U,/8X, +8Uy/0%, =0,
Bu,/3x, = B0,/3%x, — B,/ /BXy +0uy/8x,=0, 2.4)
—-80,/0x, +3u,/3%, —80,/9%, —00,/8x,=0,

—80,/8%, — B1,/8%, +30,/9%, — 8V,/8x,=0,

30,/0x, —du,/8x, +8V,/8x; +80;/82,=0,

Bu,/8x, +81,/3%, —80,/0x, +00,/8x,=0.

The method for investigating the infinitesimal symme-
tries has been described by one of the authors.® Fol-
lowing Dieudonné* we cast the system of partial differ-
ential equations into an equivalent set of differential
forms, where we put:

duy /0%~ Py

(1,7=1,2,3,4) (2.5)

v, /9%~ G5 -

Consequently, for the investigation of infinitesimal sym-
metries we consider the following differential forms:

Fbis-erPag@urre vy Qaa) == Py = Gap = Paz = Pra»
) N G R )= = Pa1 +q32 +Dgq — Paa»
Fa( ..................... )=p21+q22 +P15 +Day s
F4( ..................... )=P11—412—P23+P44»
(2.6)
Fs( ..................... ):‘6141 +P4 = 33 +G14»
) R R RS )= ~gg, = D3z ¥ G2 — Gas »
) R R ) =qy; = Pag t 13 + 34
Fa( ..................... ):qu+bu_p23 44 »
a;=du; —pydx, —pid, —pudxy - pydx, (i=1,...,4),
B =dv; = qdx, - qi0% — % - qdx, (i=1,...,4),
and dF,,...,dFg,do,,... ,dg,.
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For investigating the symmetries we consider the
following vector fields (infinitesimal generators):

4
9 o
zZ, = (u -—+11,,———)
lkZ—l " ou, 80,/
4
3 3
= ———v———
% )?;;1<ukavk kauk) ’

5 9 2 ] o] ] 2

Sy = Uy Uy —— T U = V)T Uyt Uy — Uy
3 Maw,  Cau, du,  "ou, ‘du, dv, ov, 9u,’
7 e} . 9 ] 3 . 2 v e} o
= = Uy + Uy ~ Uy — Uy + Uy Uy + U
Mgy, Pau, ‘Bu, Cav, Ydu,  Bu, ouy  8v
A 0 + 1 2 u 2 v 2 v 2 +2 8 +v 2
U T Uy Uy — Uy — Uy = Uy + Uy + Uy
8 Tlou, tom, ou, Cow, ‘lov, tov, Zov, ou,’
L2} 0 9 b2} 2
Zg=

U T A U AU T A U = Uy
duy ou, ou, v, v,

[+ 2
Z,=u +U;— +V +1 U~ +U +0 +U,—
T auy  ou,  ‘pu, “50, %o, tou, Zov, Bu,’

Z, 2 v + 0 v 0 +u 2 v 9 u 9 v 2

SUyT = Uyt Uy T = VT — U — — = U,——

8 T3, ou, fav, fou, Cdv, ‘auy ‘ov, Com,
(2.7

The following theorems can easily be obtained by
calculating the Lie bracket of the vector fields Z;
(i=1,...,8).

Theorem 1: The vector fields Z,,..., Z; form a
basis of a nonabelian Lie algebra under the Lie bracket.
The center is given by {Z,, Z,, 0}

Theorem 2: The vector fields Z,, Z,, Z,, Z; form a
basis of a nonabelian Lie algebra under the Lie bracket.

Consider now the quantity /%y and the vector fields

Zyy .., Zg 49 is a real quantity, i.e.,
4
V= +e). (2.8)
E
Let L,(-) denote the Lie derivative of a differential

form with respect to a vector field V.

Theorem 3: The quantity 'y is invariant under the
vector fields Z,, Z;, Z,, Z4

Proof: A straightforward calculation shows that

L, 4"4=0 (i=2,3,4,8). (2.9)

Theorem 4: The vector fields 2,, Z;, Z,, Z, form a
basis of a nonabelian Lie algebra under the Lie bracket.

The once-extended vector fields® of Z,, ..., Z, are
given by (compare Appendix)

4 4
— 9 2]
21:Z1+ZZ <Pkiép__‘+¢1k1m) ,
9
Zy =7, +ZZ (pkiaq (kaa—pk;‘) s
0
=27+ ~p ) < +p
3 E[(pu j sz1 ps;ap 413p3]
+ _2 + 2 + o 0
(Ixjaqzj %iaqu qaiaq.;,- —q.uaqaj) »
o] 2] 2]
2\, 5 2
1:) (quapz/ Pz,aqu>
a 2] o]
—) + [~gy;——+p,— ] ,
31) (qajap«u f’uaqa)]
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— Uy = Uy Uy
Sou, Cou, ov,’

4

- 3 E) 9 L=}

Z.=2Z +§ [(p —+q ——) +</[ —+p -—)
6~ Zg et 1y 84q,, 4j 8p,, 14 8Dy 44 2q,,

2 2] Ie]
(roag o) (o)
2] el 0
z Z”; [<”“‘ 3y, 5 )+(”"qu, s aqu)
A 3 o 8
2 8P4y 4 8Py 21 94y 4 9q,, ’
2] o] 3
O 3 [ R e
o] o el
+(p3jaq _q1j3p31> <p” 945, qZIapq,')]

(2.10)

Calculating the Lie derivative of the differential
forms given by Eq. (2.6) with respect to the vector
fields given by Eq. (2.10), we find that the Lie deriva-
tives are always elements of the differential ideal gen-
eratedbytheset{F,, ..., Fg, 0y, ..., 0, B,+-+, B Con-
sequently, the Dirac equation without rest mass is in-
variant under the infinitesimal generators Z,, ..., Z,.
The transformation groups associated with the infinites-
imal generators Z, ..., Z, are given by the Lie series

(yy oo e v)T~expleZ )y, ... 007 (2.11)

The space under consideration is R’. Since the autono-
mous system of differential equatiuns associated with
the vector fields Z,, ..., Z, are linear it follows that
the vector fields are complete. For example, Z, is
associated with the transformation group (“duality

rotation”)
iy cose =—sine) fu;
-~ . ) , (2.12)
I sine cose /\r,
where i=1,...,4.

There are two points to be made.
Point 1: In order to obtain the linear symmetry gen-
erators Z,,..., Z, we make the general Ansatz

4
2] a 9 2]
Z = a; Uy ——+b, v, —+e; 0, —+du,—) .
‘;J< ij ‘81,{, i ‘BU,- ij xa“j ti ‘81)]-

(2.13)

where a;;, b,;,¢;;,d;;© R Then we calculate the once-
extended vector field Z (compare Appendix). To obtain
the linear symmetry generators we require that

LzFi€(Fyy .-, Fg),
Lo, e(Fy ..., By,

and so on, where (..-) denotes the differential ideal
generated by { -}. The coefficients @iy «»,d;; are
determined by the Egs. (2.14). Equations (2 14) can be
solved and we obtain the vector fields Zl, N ZB.

Point 2: We mention that the symmetry generators
Z,, ..., Zy can also be obtained by applying an approach

(2.14)
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described by Harrison and Estabrook.’ They discussed
briefly the massless Dirac equation written as a set of
eight 3-forms in the field variables.

Consider now infinitesimal generators which are as-
sociated with the Lie-Béicklund tangent transformation

groups. We consider the vector fields
. a3
i) =F( Py 'q“)gz—l—; s
5 (2.15)
Wi =Fi(p11’ . ,(144)5 ,
where i =1 ,8and j=1,...,4. FpPy, vvsTaa)y -on>
FolPipse - ,q44) are given by Eq. (2.6). The calculation

of the Lie derivatives of the differential forms

Fy «..,Fg,a,,..., B, with respect to the vector fields
v and W tells us that the vector fields V') and
w ) are infinitesimal generators which leave invariant
the Dirac equation without rest mass. The Lie Bick-
lund tangent transformation groups can be obtained

by infinite extension of the infinitesimal generators.
Finally, we notice that the commutators [V¢9), Z,] and
(w49 z.]are elements of a vector space V, where
k=1,...,8 and V is the vector space with the basis
{yah pgaiy,

3. DIRAC EQUATION WITH NONVANISHING REST
MASS

Consider now the Dirac equation with rest mass m,
written as

E i mw ) it w» +mocy=0, (3.1)
Introducing the dimensionless quantity

X =myex, /M, (R=1,2,3,4), (3.2)
we obtain

: a .9

L5 ) - i3 000) 4920, (3.3)

In the following the bar is omitted. Again we put ¥,(x)
=uy(x) +1v,(x) and find as above a linear system of eight
coupled partial differential equations. In contrast to
the Eq. (2.4) now not only the derivatives of the fields
u,(x) and v,(x) occur, but also the fields u,(x) and v,(x).
Thus we must study the following differential forms:

Filtty, ooy Vg Pirs v oo s Qag) = —Pgg = Qup —Paz = Pra + 01,
Fz( .................... ):_p3]+q32 +Pga = Pag + 0y,
Fa( .................... ):p21+q22+p13+p34+03,
Y )= Pry = Gy = Pag +Dag + Vg »
2 R Y= =G +Pgp = 3z — Gr1a — Uy »
) R R Y= Qa1 = Day +Gu43 — Goqg — Us
] o R R IR ) =qy1 = Doy 13 +G3a— Ug»
Fs( .................... ):qu+p12_q23+q44_u4,
(3.4)
Qs »on s Py
Ay ...,B, are given by Eq. (2.6). We may well ask
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which vector fields given by Eq. (2.7) and (2.10) leave
invariant the differential forms written above. By cal-
culating the Lie derivatives of the differential forms
given above with respect to the vector fields Z,, ..., Z,
we find that the Dirac equation with rest mass i, is in-
variant under the vector fields Z,, Z,, Z,, Z;,. Again in-
finitesimal generators which are associated with Lie
Bécklund tangent transformation groups can be given at
once, namely

ViD= Fou,, ... 2 Q44)8 /U,
; 3.
W“”=F'»(u1, Qa8 0V, (3.5)
where i = ,8and j=1, s Fi(uyy ooy Q44),
Foluy,. .. ,q,ﬂ) are given by Eq. (3.4). The calculation of
the Lie derivatives of the differential forms F,, ..., Fy,
a,,...,B, with respect to the vector fields V¥’ and

W) shows that the vector fields V%) and W'/ are in-
finitesimal generators which leave invariant the Dirac
equation with rest mass.

4. NONLINEAR DIRAC EQUATION

Let us study the infinitesimal symmetries of the
Dirac equation with a nonlinear term. We add the non-
linear term () to the left-hand side of Eq. (3.3).

Then we obtain the nonlinear Dirac equation
3

L5 0nd) =iz + 4 4@ =0, (4.1)
where T = (%, pF, g%, —¥¥). Again let us put ¢,(x) = u,(x)

+iv,{x). We then have a coupled system of eight nonlin-
ear partial differential equations.

Now we should ask whether the nonlinear Dirac equation
obtained in this way is invariant under the vector fields
given by Eq. (2.10). A straightforward calculation
(again we have to calculate the Lie derivative) leads to
the following theorem:

Theorem 5: The non